Block-triangular MIMO system 2

Deprecation warning

This website is now archived. Please check out the new website for Centre for Intelligent Systems which includes both A-Lab Control Systems Research lab and Re:creation XR lab.

However, the Dynamic System Model Database can still be used and may be updated in the future.

A single link robotic manipulator

Model description: 

The dynamic equations governing the behavior of a single link robot with flexible joint are traditionally obtained from Lagrangian dynamics considerations. The simple robot system under study is shown in the attached image. Let $x_1=\theta_m$ be the motor angular position, the corresponding angular velocity $x_2 = d\theta/dt$, the elastic force $x_3 = k_s(\theta_t - \theta_m)$ and $x_4 = \{ d\theta_l/dt - d\theta_m/dt\}/\rho$, where $\rho^2=1/k_s$. Then the state variable representation is:

$$\begin{align*} \dot{x}_1(t) &= x_2(t)\\ \dot{x}_2(t) &= -a_5x_2(t)+a_1x_3(t)+a_1u(t)\\ \dot{x}_3(t) &= x_4(t)/\rho\\ \dot{x}_4(t) &= \{ -a_2a_3\sin{[\rho^2x_3(t)+x_1(t)]}-a_4x_3(t)-a_7x_2(t)-a_6\rho x_4(t) - a_1u(t)\}/\rho \end{align*}$$

with $a_1=1/J_m$, $a_2=1/J_l$, $a_3=mgl$,$a_4=a_1+a_2$,$a_5=B_m/J_m;a_6=B_l/J_l$,$a_7=a_6-a_5$ and $u(t)=\tau(t)$.

Type: 

Form: 

Model order: 

4

Time domain: 

Linearity: 

Attachment: 

Publication details: 

TitlePhysical parameter estimation of the nonlinear dynamics of a single link robotic manipulator with flexible joint using the HMF method
Publication TypeConference Paper
Year of Publication1997
AuthorsDaniel-Berhe, S., and Unbehauen H.
Conference NameProceedings of the 1997 American Control Conference, 1997.
Date Published06/1997
PublisherIEEE
Conference LocationAlbuquerque, NM
ISBN Number0-7803-3832-4
Accession Number6016897
Keywordsalgebra, continuous time systems, manipulator dynamics, Nonlinear dynamical systems, parameter estimation
AbstractThe application of the Hartley modulating functions (HMF) method is investigated to estimate the physical parameters of a single link robotic manipulator with flexible joint. The approach uses a weighted least-squares algorithm in the frequency domain. Knowing the structure of a continuous-time system, the identification method will only focus on the estimation of the physically-based system parameters using input and noise-corrupted output signal records. The methodology facilitates the conversion of a system differential equation into an algebraic equation in the parameters. Numerical simulations for a single link robotic manipulator with flexible joint are reported, which illustrate the application and performance of the methodology. The HMF method shows promising results for the identification of physically-based continuous-time nonlinear systems in the presence of noticeable measurement noises
DOI10.1109/ACC.1997.610763

Three Tank Water System

Model description: 

Attached image shows the principal structure of the three-tank system. The plant consists of three cylinders $T_1$, $T_2$, and $T_3$ with the cross section $S_A$. These tanks are connected serially with each other by pipes with the cross section $S_n$. A single outflow valve with the cross section $S_n$ is located at tank 2. The outflowing liquid (usually distilled water) is collected in a reservoir, which supplies the pumps 1 and 2. $H_{max}$ denotes the highest possible liquid level. The control input signals are the pump liquid flow rates $Q_1$ and $Q_2$ , the output signals are the liquid levels $h_1$ and $h_2$ .

Define the following variables and the parameters: $az_i$ : outflow coefficients of tank $i$ ; $h_1$ , $h_2$ , $h_3$ : liquid levels (m); $Q_{13}$ : flow rate from tank 1 to tank 3 $(m^3/sec)$ ; $Q_{32}$ : flow rate from tank 3 to tank 2 $(m^3/sec)$ ; $Q_{20}$ : flow rate from tank 2 to reservoir $(m^3/sec)$ ; $Q_1$ , $Q_2$ : supplying flow rates $(m^3/sec)$ ; $S_A$ : section of cylinder $(m^2)$ ; $S_1$ : section of leak opening $(m^2)$ ; $S_n$ : section of connection pipe $(m^2)$. Then, the dynamics of the three-tank system is expressed by a set of differential equations

$$\eqalignno{S_{A}\displaystyle{{dh_{1}}\over{dt}}=&\,Q_{1}(t)-Q_{13}(t)\cr S_{A}\displaystyle{{dh_{3}}\over{dt}}=&\, Q_{13}(t)-Q_{32}(t)\cr S_{A}\displaystyle{{dh_{2}}\over{dt}}=&\, Q_{2}(t)+Q_{32}(t)-Q_{20}(t)\cr Q_{13}(t)=&\,\alpha z_{1}S_{n}sgn(h_{1}(t)-h_{3}(t))\sqrt{(2g\left\vert h_{1}(t)-h_{3}(t)\right\vert}\cr Q_{32}(t)=&\,\alpha z_{3}S_{n}sgn(h_{3}(t)-h_{2}(t))\sqrt{2g\left\vert h_{3}(t)-h_{2}(t)\right\vert}\cr Q_{20}(t)=&\,\alpha z_{2}S_{n}sgn(h_{2}(t))\sqrt{2g\left\vert h_{2}(t)\right\vert},}$$

where $\alpha_1$, $\alpha_2$, $\alpha_3$: outflow coefficients (dimensionless, real values ranging from 0 to 1), $g$: earth acceleration $(m/s^2)$, $sgn(z)$: sign of the argument $z$.

In the simulation, the discretized model of three-tank system is obtained by first-order Euler's method, the sampling period is 1 s and the simulation time is 1500 s. The parameters of three-tank system are given in the table below. The initial conditions are $h_1(1)=0$, $h_2(1)=0$, $h_3(1)=0$, $Q_1(1)=0$, and $Q_2(1)=0$.

$S_A$ $0.0154m^2$
$S_n$ $5 \times 10^{-5}m^2$
$H_{max}$ $0.6m$
$Q_{max}$ $0.0001m^3/s$
$\alpha_1$ $.22$
$\alpha_2$ $.28$
$\alpha_3$ $.27$

Type: 

Form: 

Time domain: 

Linearity: 

Attachment: 

Publication details: 

TitleData-Driven Model-Free Adaptive Control for a Class of MIMO Nonlinear Discrete-Time Systems
Publication TypeJournal Article
Year of Publication2011
AuthorsHou, Zhongsheng, and Jin ShangTai
JournalIEEE Transactions on Neural Networks
Volume22
Start Page2173
Issue12
Pagination2173-2188
Date Published11/2011
ISBN Number12409274
ISSN1045-9227
Keywordsadaptive control, control system synthesis, convergence, discrete time systems, linearisation techniques, MIMO systems, nonlinear control systems, stability, tracking
AbstractIn this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence.
DOI10.1109/TNN.2011.2176141

Nonlinear System (2)

Model description: 

Consider the nonlinear system

$$\begin{align*} y_{1}(k+1)&={{2.5y_{1}(k)y_{1}(k-1)}\over{1+y_{1}(k)^{2}+y_{2}(k-1)^{2}+y_{1}(k-2)^{2}}} \\ &+0.09u_{1}(k)u_{1}(k-1)+1.2u_{1}(k)+1.6u_{1}(k-2) \\ &+0.5u_{2}(k)+0.7\sin (0.5(y_{1}(k)+y_{1}(k-1))) \\ &\times\cos (0.5(y_{1}(k)+y_{1}(k-1))) \\ y_{2}(k+1)&=\displaystyle{{5y_{2}(k)y_{2}(k-1)}\over{1+y_{2}(k)^{2}+y_{1}(k-1)^{2}+y_{2}(k-2)^{2}}} \\ &+u_{2}(k)+1.1u_{2}(k-1)+1.4u_{2}(k-2) \\ &+0.5u_{1}(k). \end{align*}$$

The initial values are: $y_1(1)=y_1(3)=0$, $y_1(2)=1$, $y_2(1)=y_1(3)=0$, $y_2(2)=1$, $u(1)=u(2)=[0,0]^{\mathrm T}$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Autonomity: 

Publication details: 

TitleData-Driven Model-Free Adaptive Control for a Class of MIMO Nonlinear Discrete-Time Systems
Publication TypeJournal Article
Year of Publication2011
AuthorsHou, Zhongsheng, and Jin ShangTai
JournalIEEE Transactions on Neural Networks
Volume22
Start Page2173
Issue12
Pagination2173-2188
Date Published11/2011
ISBN Number12409274
ISSN1045-9227
Keywordsadaptive control, control system synthesis, convergence, discrete time systems, linearisation techniques, MIMO systems, nonlinear control systems, stability, tracking
AbstractIn this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence.
DOI10.1109/TNN.2011.2176141

Nonlinear System (1)

Model description: 

Consider the nonlinear system

$$\begin{align*} x_{11}(k+1) &=\frac{x_{11}^2(k)}{1+x_{11}^2(k)}+0.3x_{12}(k), \\ x_{12}(k+1) &=\frac{x_{11}^2(k)}{1+x_{12}^2(k)+x_{21}^2(k)+x_{22}^2(k)}+a(k)u_{1}(k), \\ x_{21}(k+1) &=\frac{x_{21}^2(k)}{1+x_{21}^2(k)}+0.2x_{22}(k), \\ x_{22}(k+1) &=\frac{x_{21}^2(k)}{1+x_{11}^2(k)+x_{12}^2(k)+x_{22}^2(k)}+b(k)u_{2}(k), \\ y_1(k+1) &= x_{11}(k+1)+0.005 \mathrm{rand}(1), \\ y_2(k+1) &=x_{21}(k+1)+0.005 \mathrm{rand}(1), \end{align*}$$

where $a(k)=1+0.1\sin{(2\pi k/1500)}$, $b(k)=1+0.1\cos{(2\pi k/1500)}$are two time-varying parameters. This example is controlled by using neural network without time-varying parameters $a(k)$, $b(k)$, and the noise.

The initial values are: $x_{1,1}(1)=x_{1,1}(2)=x_{2,1}(1)=x_{2,1}(2)=0.5$, $x_{1,2}(1)=x_{1,2}(2)=x_{2,2}(1)=x_{2,2}(2)=0$, $u(1)=u(2)=[0,0]^{\mathrm T}.$

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleData-Driven Model-Free Adaptive Control for a Class of MIMO Nonlinear Discrete-Time Systems
Publication TypeJournal Article
Year of Publication2011
AuthorsHou, Zhongsheng, and Jin ShangTai
JournalIEEE Transactions on Neural Networks
Volume22
Start Page2173
Issue12
Pagination2173-2188
Date Published11/2011
ISBN Number12409274
ISSN1045-9227
Keywordsadaptive control, control system synthesis, convergence, discrete time systems, linearisation techniques, MIMO systems, nonlinear control systems, stability, tracking
AbstractIn this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence.
DOI10.1109/TNN.2011.2176141

Block-triangular MIMO system 2

Model description: 

$$\Sigma _{S_{2}}: \cases{\begin{align*} \dot{x}_{1,1} &=f_{1,1}(\bar {x}_ {1,1},\bar {x}_{2,3})+g_{1,1}(\bar {x}_{1,1},\bar{x}_{2,3})x_{1,2} \\ \dot{x}_{1,2} &=f_{1,2}(X)+g_{1,2}(\bar {x}_{1,1},\bar{x}_ {2,3})u_{1} \\ \dot{x}_{2,1} &=f_{2,1}(\bar {x}_{2,1})+g_{2,1} (\bar {x}_{2,1})x_{2,2} \\ \dot{x}_{2,2} &=f_{2,2}(\bar {x}_{2,2})+g_{2,2}(\bar {x}_{2,2})x_{2,3} \\ \dot{x}_{2,3} &=f_{2,3} (\bar {x}_{1,1},\bar {x}_{2,3})+g_{2,2}(\bar {x}_{1,1},\bar{x}_{2,3})x_{2,4} \\ \dot{x}_{2,4} &=f_{2,4}(X, u_{1})+g_{2,4}(\bar {x}_ {1,1},\bar{x}_{2,3})u_{2} \\ y_{j} &=x_{j,1}, \quad j=1,2, \end{align*}}$$

where $\bar{x}_{j,i_j}=[x_{j,1},\dots,x_{j,i_j}]^{\mathrm T},j=1,2, i_1=1,2, i_2=1,\dots,4$, and $X = [\bar{x}_{1,2}^{\mathrm T}, \bar{x}_{2,4}^{\mathrm T}]^{\mathrm T}$.

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleAdaptive neural control of uncertain MIMO nonlinear systems
Publication TypeJournal Article
Year of Publication2004
AuthorsGe, Shuzhi Sam, and Wang Cong
JournalIEEE Transactions on Neural Networks
Volume15
Start Page674
Issue3
Pagination674-692
Date Published05/2004
ISSN1045-9227
Accession Number8012935
Keywordsadaptive control, closed loop systems, control system synthesis, MIMO systems, neurocontrollers, nonlinear control systems
AbstractIn this paper, adaptive neural control schemes are proposed for two classes of uncertain multi-input/multi-output (MIMO) nonlinear systems in block-triangular forms. The MIMO systems consist of interconnected subsystems, with couplings in the forms of unknown nonlinearities and/or parametric uncertainties in the input matrices, as well as in the system interconnections without any bounding restrictions. Using the block-triangular structure properties, the stability analyses of the closed-loop MIMO systems are shown in a nested iterative manner for all the states. By exploiting the special properties of the affine terms of the two classes of MIMO systems, the developed neural control schemes avoid the controller singularity problem completely without using projection algorithms. Semiglobal uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop of MIMO nonlinear systems is achieved. The outputs of the systems are proven to converge to a small neighborhood of the desired trajectories. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters. The proposed schemes offer systematic design procedures for the control of the two classes of uncertain MIMO nonlinear systems. Simulation results are presented to show the effectiveness of the approach.
DOI10.1109/TNN.2004.826130

Pages