Bilinear system

Muscle-knee state space model

Model description: 

The state model of the knee-quadriceps can be expressed as

$$\begin{cases} \begin{align*} \dot{x}_1 &= \left[ s_0 \alpha K_m + s_v q\dfrac{s_0\alpha F_mx_1 - s_ux_2x_1}{1 + px_1 - s_vqx_2}\right] u_{ch} - s_ux_1u_{ch} - \dfrac{s_v ax_1 r_p x_4}{L_0 (1+px_1-s_vqx_2)}\\ \dot{x}_2 &= \left[ \dfrac{s_0\alpha F_m - s_ux_2}{1 + px_1 - s_vqx_2} \right]u_{ch} + \dfrac{bx_1r_px_4 - s_vax_2r_px_4}{L_0(1+px_1-s_vqx_2)}\\ \dot{x}_3 &= x_4\\ \dot{x}_4 &= \dfrac{1}{I}[x_2r_p - \lambda x_3 - \mu x_4 - mgl_c \cos{x_3}], \end{align*} \end{cases}$$

where $\textbf{x}=[x_1, \ldots, x_4]^{\mathrm T} = [K_c, F_c, \theta, \dot{\theta}]^{\mathrm T}$ is the state vector and $\textbf{u}=[u_{ch},\alpha ]^{\mathrm T}$ the control vector. The variable $\theta$ represents the knee joint angle and the variables $K_c, F_c, u_{ch}, \alpha$ represent the state variables of the quadriceps muscle model.

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleToward lower limbs movement restoration with input-output feedback linearization and model predictive control through functional electrical stimulation
Publication TypeJournal Article
AuthorsMohammed, S., Poignet P., Fraisse P., and Guiraud D.

Tension leg platform system

Model description: 

The present study of tension leg platform is the first commercial application of a revolutionary design of offshore production platform developed by well-known oil company. Intended for oil and gas production in water depths beyond the reach of traditional fixed structures, the tension leg platform was designed as a rectangular shaped floating platform which was connected to the ocean floor by 16 vertical steel tethers or legs, four per corner. The legs were kept in tension so that vertical movement was suppressed, while limited horizontal movement may occur.

The estimation model is:

$$\begin{align*} y(k) &= 0.590y(k − 3)+1.0598y(k − 1) − 1.0931y(k − 2) + 121.13u(k − 1)u(k− 1)u(k − 9) \\ &− 116.54u(k − 6)u(k − 6)u(k− 6) − 19.797u(k − 4)u(k − 8)u(k − 8) \\ &+ 214.04u(k − 5)u(k − 9) − 34.877u(k− 1)u(k − 1)u(k − 1) − 3.7983u(k − 1)u(k− 2)u(k − 7) \\ &− 25.04u(k − 4)u(k − 8)u(k− 11) + 165.93u(k − 2)u(k − 3)u(k − 4) \\ &− 173.85u(k − 6)u(k − 7) − 69.693u(k− 4)u(k − 12) + 203.12u(k − 5)u(k − 6)u(k − 6) \\ &+ 727.86u(k − 2)u(k − 3)u(k − 5) − 11.107u(k− 3)u(k − 10)u(k − 11) \\ &+ 11.506u(k − 6)u(k− 6)u(k − 12) − 68.607u(k − 2)u(k − 4)u(k− 6) \\ &− 366.75u(k − 3)u(k − 5)u(k − 6)− 25.696u(k − 4)u(k − 8)u(k − 12) \\ &+ 137.86u(k − 1)u(k − 2)u(k − 5)− 142.24u(k − 2)u(k − 2)u(k − 9) \\ &+ 101.44u(k− 1)u(k − 6)u(k − 9) − 9.0283u(k − 3)u(k− 3)u(k − 12) \\ &− 168.30u(k − 2)u(k − 5)u(k − 6)+ 30.295u(k − 5)u(k − 6)u(k − 8) \\ &− 0.158u(k− 1)u(k − 2)u(k − 2) − 433.21u(k − 2)u(k− 2)u(k − 4) \\ &+ 39.88u(k − 3)u(k − 8)u(k − 11)− 162.26u(k − 1)u(k − 4)u(k − 11) \\ &− 212.08u(k− 1)u(k − 1)u(k − 5) − 438.7u(k − 3)u(k− 3)u(k − 5) \\ &+ 162.15u(k − 2)u(k − 4)u(k − 11)− 3.607u(k − 4)u(k − 4)u(k − 11) \\ &+ 13.262u(k− 6)u(k − 9)u(k − 9)+448.4u(k − 3)u(k − 4)u(k− 6) \\ &− 46.475u(k − 4)u(k − 4)u(k − 9) + 119.95u(k − 1)u(k − 1)u(k − 2) + noise \:terms. \end{align*}$$

Here, the input is the wave, and the output is the pitch. Sample rate is 2.2473 Hz

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleNon-linear pitch motion identification and interpretation of a tension leg platform
Publication TypeJournal Article
AuthorsLiu, Jui-Jung, Huang Yun-Fu, and Lin Hung-Wei

Time varying stochastic bilinear system with nonlinear feedback

Model description: 

Consider the following time varying stochastic bilinear system with nonlinear feedback.

$$\begin{align*} \begin{bmatrix} x_1(t+1) \\ x_2(t+1) \end{bmatrix} &= \left\{\begin{bmatrix}0.1 & 0.2 \\ 0.5 & -0.3\end{bmatrix} + \begin{bmatrix}0.36 & -0.3 \\ 0.2 & 0.42\end{bmatrix}\omega(t) \right\}\begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix} \\ &+\begin{bmatrix}0.1 & 0.9 \\ 1.5 & 1.2\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}u(t) + \begin{bmatrix}-0.3t^2\exp{(-t)} \\ 0.4t\exp{(-t)}\end{bmatrix}u(t), \\ \begin{bmatrix}y_1(t) \\ y_2(t)\end{bmatrix} &= \begin{bmatrix} 0.7\sin{t} & -0.9 \\ 0.8 & -0.6\cos{t}\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}, \end{align*}$$

where

$u(t)=0.2\sin{(y_1(t) + y_2(t))} + 0.3[y_1(t)+y_2(t)].$

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleRandom parameter discrete bilinear system stability
Publication TypeConference Paper
AuthorsYang, Xueshan, Mohler R.R., and Chen Lung-Kee

Time invariant stochastic bilinear system

Model description: 

Consider the following time invariant stochastic bilinear system:

$$\begin{align*} \begin{bmatrix}x_1(t+1)\\x_2(t+1)\end{bmatrix} &= \left\{ \begin{bmatrix}0.2 & 0.4 \\ 0.5 & -0.3\end{bmatrix} + \begin{bmatrix}0.3 & 0.2 \\ -0.3 & 0.4\end{bmatrix}\omega(t) \right\} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}+ \begin{bmatrix}2 & 5 \\ 3 & 9\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}u(t) + \begin{bmatrix}-0.3 \\ 0.4\end{bmatrix}u(t), \\ \begin{bmatrix}y_1(t) \\ y_2(t)\end{bmatrix}& = \begin{bmatrix} 0.7 & 0.8 \\ -0.9 & -0.6\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}, \end{align*}$$

where

$u(t)=0.24[y_1(t) + y_2(t)] + 0.32[y_1(t-1) + y_2(t-1)]$

and $\omega(t)$ is a white noise with zero mean and variance 0.2.

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleRandom parameter discrete bilinear system stability
Publication TypeConference Paper
AuthorsYang, Xueshan, Mohler R.R., and Chen Lung-Kee

Bilinear system

Model description: 

The time-invariant bilinear system is given by

$$Y(t) = 1.5X(t) + 1.2X(t-1) - 0.2X(t-2) + 0.7X(t-1)Y(t-1) - 0.1X(t-2)Y(t-2) + \epsilon(t),$$

where $A=0, \alpha=0, B=\begin{bmatrix}1.5 &1.2 &-0.2\end{bmatrix}, C = \begin{bmatrix}0.7 &0 &-0.1\end{bmatrix}$. Note that $\Theta = \begin{bmatrix}B & C\end{bmatrix}^{\mathrm T}.$

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleIdentification of bilinear systems using Bayesian inference
Publication TypeConference Paper
AuthorsMeddeb, S., Tourneret J.Y., and Castanie F.

Pages