Pendulum system with Coulomb friction

Cart plus crane plus hammer

Model description: 

The Euler-Lagrange equations of motion of the system are given as follows

$$\begin{pmatrix} (M+m) & mL\cos{q_1} & 0\\ mL\cos{q_1} & mL^2+\Theta & \dfrac{\Theta}{2}\\ 0 & \dfrac{\Theta}{2} & \Theta \end{pmatrix} \begin{pmatrix} \ddot{x}\\ \ddot{q_1}\\ \ddot{q_2} \end{pmatrix} + \begin{pmatrix} -mL\sin{q_1\dot{q_1}^2}\\ -mLg_g\sin{q_1}\\ 0 \end{pmatrix} = \begin{pmatrix} Q_x\\ Q_1\\ Q_2 \end{pmatrix},$$

where $Q_x (N)$ is the generalized force pushing the cart in the horizontal “$x$” direction, $Q_1$ and $Q_2$ are torques in $(N · m)$ rotating the beam of the crane around a horizontal axis orthogonal to “$x$” and counter-rotating the hamper at the free end of the beam to avoid turning out the worker from the hamper. $L (m)$ denotes the lenght of the crane’s beam, $g_g$ ($m/s^2$) is the gravitational acceleration, $m$ ($kg$) and $\Theta$ $(kg · m^2)$ denote the momentum (with respect to its own center of mass that was supposed to be on the rotational axle) and the mass of the hamper.

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleAnalysis of the Fixed Point Transformation Based Adapive Robot Control
Publication TypeConference Paper
AuthorsTar, J.K., and Rudas I.J.

Third-order nonlinear discrete-time system #2

Model description: 

Image below shows the block diagram of a discrete-time system.

$$\begin{align*} H_1(z) &=\dfrac{0.2z^{-1}}{z^{-1}-0.21z^{-2}} \\ H_2(z) &=\dfrac{0.1z^{-1}}{1-1.1z^{-1}+0.3z^{-2}} \\ H_3(z) &=\dfrac{0.3z^{-1}}{1-0.4z^{-1}} \end{align*}$$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Publication details: 

TitleNonlinear system identification using genetic algorithms with application to feedforward control design
Publication TypeConference Paper
AuthorsLuh, Guan-Chun, and Rizzoni G.

Third-order nonlinear discrete-time system #1

Model description: 

The block diagram of a third-order nonlinear discrete time system adopted by Fakhouri for identification evaluation is shown below.

$$\begin{align*} H_1(z) &=\dfrac{0.1z^{-1}}{1-0.5z^{-1}} \\ H_2(z) &=\dfrac{0.1z^{-1}}{1-1.3z^{-1}+0.42z^{-2}} \\ H_3(z) &=\dfrac{1.0z^{-1}}{1-0.7z^{-1}} \end{align*}$$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Publication details: 

TitleNonlinear system identification using genetic algorithms with application to feedforward control design
Publication TypeConference Paper
AuthorsLuh, Guan-Chun, and Rizzoni G.

Continuous stirred-tank reactor system

Model description: 

The following CSTR system developed by Liu(1967). The reaction is exothermic first-order, $A \rightarrow B$, and is given by the following mass and energy balances. One should notice that the energy balance includes cooling water jacket dynamics. The following model was identified using regression techniques on the energy balance equations:

$$\begin{align*} y(k) &= 1.3187y(k-1) - 0.2214y(k-2) - 0.1474y(k-3) \\ &- 8.6337u(k-1) + 2.9234u(k-2) + 1.2493u(k-3) \\ &- 0.0858y(k-1)u(k-1) + 0.0050y(k-2)u(k-1) \\ &+ 0.0602y(k-2)u(k-2) + 0.0035y(k-3)u(k-1) \\ &- 0.0281y(k-3)u(k-2) + 0.0107y(k-3)u(k-3). \end{align*}$$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Autonomity: 

Publication details: 

TitleIdentification and Control of Bilinear Systems
Publication TypeConference Paper
AuthorsBartee, James F., and Georgakis Christos

Pendulum system with Coulomb friction

Model description: 

Consider a pendulum system with Coulomb friction and external perturbation

$$ \ddot {\theta} = \frac{1}{J}u - \frac{g}{L}\sin \theta - \frac{V_s}{J}\dot{\theta } - \frac{P_s}{J}\mathrm{sgn}(\dot{\theta}) + \upsilon, $$

where parameters have the following values $M=1.1$, $L=0.9$, $J=ML^2=0.891$, $V_s=0.18$, $P_s=0.18$, $P_s=0.45$, $g=9.815$, and $v$ is an uncertain external perturbation $|\upsilon| \leq 1$.

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleA Simple Nonlinear Observer for a Class of Uncertain Mechanical Systems
Publication TypeJournal Article
AuthorsSu, Yuxin, Müller P.C., and Zheng Chunhong

Pages