A GAMAS-based system identification scheme is developed to construct NARX model of nonlinear systems. Several simulated examples demonstrate that it can be applied to identify both nonlinear continuous-time systems and discrete-time systems with acceptable accuracy. Inverting the identified NARX model, a feedforward controller may be derived to track desired time varying signal of nonlinear systems. Sufficient conditions of the invertibility of NARX model are proposed to investigate the existence of the inverse model. Simulation results depict the effectiveness of the feedforward controller with the aid of simple feedback controller designed for regulation purpose

A GAMAS-based system identification scheme is developed to construct NARX model of nonlinear systems. Several simulated examples demonstrate that it can be applied to identify both nonlinear continuous-time systems and discrete-time systems with acceptable accuracy. Inverting the identified NARX model, a feedforward controller may be derived to track desired time varying signal of nonlinear systems. Sufficient conditions of the invertibility of NARX model are proposed to investigate the existence of the inverse model. Simulation results depict the effectiveness of the feedforward controller with the aid of simple feedback controller designed for regulation purpose

The following CSTR system developed by Liu(1967). The reaction is exothermic first-order, $A \rightarrow B$, and is given by the following mass and energy balances. One should notice that the energy balance includes cooling water jacket dynamics. The following model was identified using regression techniques on the energy balance equations:

The research presented in this paper combines the problem of identifiction and control of nonlinear processes. This is done by approximating the process with a bilinear model and designing model-based control structures (Reference System Controllers) based on the bilinear approximation. The identification of the bilinear model and the construction of the controller are described below. An example of the identification and control of an exothermic CSTR is also presented.

In this paper we examine the problem of control of multivariable systems using neural networks. The problem is discussed assuming different amounts of prior information concerning the plant and hence different levels of complexity. In the first stage it is assumed that the state equations describing the plant are known and that the state of the system is accessible. Following this the same problem is considered when the state equations are unknown. In the last stage the adaptive control of the multivariable system using only input-output data is discussed in detail. The objective of the paper is to demonstrate that results from nonlinear control theory and linear adaptive control theory can be used to design practically viable controllers for unknown nonlinear multivariable systems using neural networks. The different assumptions that have to be made, the choice of identifier and controller architectures and the generation of adaptive laws for the adjustment of the parameters of the neural networks form the core of the paper

An adaptive controller for bilinear plants without delay and with stable inverses is defined based upon a bilinear model predictive control law and a classical recursive identification algorithm. For the case with no disturbance both the control error and the identification error converge to zero. For the case with a bounded disturbance, the control error is bounded and the identification converges. For the case with a constant disturbance, the control error often converges to zero and the identification converges.