Discrete bilinear plant

Deprecation warning

This website is now archived. Please check out the new website for Centre for Intelligent Systems which includes both A-Lab Control Systems Research lab and Re:creation XR lab.

However, the Dynamic System Model Database can still be used and may be updated in the future.

Third-order nonlinear discrete-time system #2

Model description: 

Image below shows the block diagram of a discrete-time system.

$$\begin{align*} H_1(z) &=\dfrac{0.2z^{-1}}{z^{-1}-0.21z^{-2}} \\ H_2(z) &=\dfrac{0.1z^{-1}}{1-1.1z^{-1}+0.3z^{-2}} \\ H_3(z) &=\dfrac{0.3z^{-1}}{1-0.4z^{-1}} \end{align*}$$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Publication details: 

TitleNonlinear system identification using genetic algorithms with application to feedforward control design
Publication TypeConference Paper
Year of Publication1998
AuthorsLuh, Guan-Chun, and Rizzoni G.
Conference NameProceedings of the 1998 American Control Conference, 1998.
Date Published06/1998
PublisherIEEE
Conference LocationPhiladelphia, PA
ISBN Number0-7803-4530-4
Accession Number6076036
Keywordsautoregressive processes, continuous time systems, discrete time systems, feedforward, genetic algorithms, identification, inverse problems, nonlinear systems
AbstractA GAMAS-based system identification scheme is developed to construct NARX model of nonlinear systems. Several simulated examples demonstrate that it can be applied to identify both nonlinear continuous-time systems and discrete-time systems with acceptable accuracy. Inverting the identified NARX model, a feedforward controller may be derived to track desired time varying signal of nonlinear systems. Sufficient conditions of the invertibility of NARX model are proposed to investigate the existence of the inverse model. Simulation results depict the effectiveness of the feedforward controller with the aid of simple feedback controller designed for regulation purpose
DOI10.1109/ACC.1998.703056

Third-order nonlinear discrete-time system #1

Model description: 

The block diagram of a third-order nonlinear discrete time system adopted by Fakhouri for identification evaluation is shown below.

$$\begin{align*} H_1(z) &=\dfrac{0.1z^{-1}}{1-0.5z^{-1}} \\ H_2(z) &=\dfrac{0.1z^{-1}}{1-1.3z^{-1}+0.42z^{-2}} \\ H_3(z) &=\dfrac{1.0z^{-1}}{1-0.7z^{-1}} \end{align*}$$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Publication details: 

TitleNonlinear system identification using genetic algorithms with application to feedforward control design
Publication TypeConference Paper
Year of Publication1998
AuthorsLuh, Guan-Chun, and Rizzoni G.
Conference NameProceedings of the 1998 American Control Conference, 1998.
Date Published06/1998
PublisherIEEE
Conference LocationPhiladelphia, PA
ISBN Number0-7803-4530-4
Accession Number6076036
Keywordsautoregressive processes, continuous time systems, discrete time systems, feedforward, genetic algorithms, identification, inverse problems, nonlinear systems
AbstractA GAMAS-based system identification scheme is developed to construct NARX model of nonlinear systems. Several simulated examples demonstrate that it can be applied to identify both nonlinear continuous-time systems and discrete-time systems with acceptable accuracy. Inverting the identified NARX model, a feedforward controller may be derived to track desired time varying signal of nonlinear systems. Sufficient conditions of the invertibility of NARX model are proposed to investigate the existence of the inverse model. Simulation results depict the effectiveness of the feedforward controller with the aid of simple feedback controller designed for regulation purpose
DOI10.1109/ACC.1998.703056

Continuous stirred-tank reactor system

Model description: 

The following CSTR system developed by Liu(1967). The reaction is exothermic first-order, $A \rightarrow B$, and is given by the following mass and energy balances. One should notice that the energy balance includes cooling water jacket dynamics. The following model was identified using regression techniques on the energy balance equations:

$$\begin{align*} y(k) &= 1.3187y(k-1) - 0.2214y(k-2) - 0.1474y(k-3) \\ &- 8.6337u(k-1) + 2.9234u(k-2) + 1.2493u(k-3) \\ &- 0.0858y(k-1)u(k-1) + 0.0050y(k-2)u(k-1) \\ &+ 0.0602y(k-2)u(k-2) + 0.0035y(k-3)u(k-1) \\ &- 0.0281y(k-3)u(k-2) + 0.0107y(k-3)u(k-3). \end{align*}$$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Autonomity: 

Publication details: 

TitleIdentification and Control of Bilinear Systems
Publication TypeConference Paper
Year of Publication1992
AuthorsBartee, James F., and Georgakis Christos
Conference NameAmerican Control Conference, 1992
Date Published06/1992
PublisherIEEE
Conference LocationChicago, Illinois
ISBN Number0-7803-0210-9
KeywordsAlgorithm design and analysis, Chemical processes, Continuous-stirred tank reactor, control system synthesis, Control systems, Control theory, linear systems, nonlinear control systems, nonlinear systems, process control
AbstractThe research presented in this paper combines the problem of identifiction and control of nonlinear processes. This is done by approximating the process with a bilinear model and designing model-based control structures (Reference System Controllers) based on the bilinear approximation. The identification of the bilinear model and the construction of the controller are described below. An example of the identification and control of an exothermic CSTR is also presented.
URLhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4792606&queryText%3DIdentification+and+Control+of+Bilinear+Systems

Generic nonlinear system 2

Model description: 

$$\begin{align*} x_1(k+1) &= 0.9x_1(k)\sin{[x_2(k)]} + \left(2 + 1.5 \dfrac{x_1(k)u_1(k)}{1+x_1^2(k)u_1^2(k)}\right)u_1(k) + \left(x_1(k) + \dfrac{2x_1(k)}{1+x_1^2(k)}\right)u_1(k)\\ x_2(k+1) &= x_3(k)(1+\sin{[4x_3(k)]}+ \dfrac{x_3(k)}{1+x_3^2(k)}\\ x_3(k+1) &= (3 + \sin{[2x_1(k)]})u_2(k)\\ y_1(k)&=x_1(k)\\ y_2(k)&=x_2(k) \end{align*}$$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Publication details: 

TitleAdaptive control of nonlinear multivariable systems using neural networks
Publication TypeConference Paper
Year of Publication1993
AuthorsNarendra, K.S., and Mukhopadhyay S.
Conference NameProceedings of the 32nd IEEE Conference on Decision and Control, 1993.
Date Published12/1993
PublisherIEEE
Conference LocationSan Antonio, TX
ISBN Number0-7803-1298-8
Accession Number4772091
Keywordsadaptive control, multivariable systems, neural nets, nonlinear systems
AbstractIn this paper we examine the problem of control of multivariable systems using neural networks. The problem is discussed assuming different amounts of prior information concerning the plant and hence different levels of complexity. In the first stage it is assumed that the state equations describing the plant are known and that the state of the system is accessible. Following this the same problem is considered when the state equations are unknown. In the last stage the adaptive control of the multivariable system using only input-output data is discussed in detail. The objective of the paper is to demonstrate that results from nonlinear control theory and linear adaptive control theory can be used to design practically viable controllers for unknown nonlinear multivariable systems using neural networks. The different assumptions that have to be made, the choice of identifier and controller architectures and the generation of adaptive laws for the adjustment of the parameters of the neural networks form the core of the paper
DOI10.1109/CDC.1993.325299

Discrete bilinear plant

Model description: 

The plant is

$$y(k)=1.2y(k-1)-0.8y(k-2)+0.2y(k-1)u(k-1)+u(k-1)+0.6u(k-2) + d(k),$$

where $d(k)$ is a disturbance.

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleAdaptive Bilinear Model Predictive Control
Publication TypeConference Paper
Year of Publication1986
AuthorsYeo, Y.K., and Williams D.C.
Conference NameAmerican Control Conference, 1986
Date Published06/1986
PublisherIEEE
Conference LocationSeattle, WA
Keywordsadaptive control, control system synthesis, Delay, Error correction, Least squares approximation, Mathematical model, parameter estimation, predictive control, Predictive models, Programmable control
AbstractAn adaptive controller for bilinear plants without delay and with stable inverses is defined based upon a bilinear model predictive control law and a classical recursive identification algorithm. For the case with no disturbance both the control error and the identification error converge to zero. For the case with a bounded disturbance, the control error is bounded and the identification converges. For the case with a constant disturbance, the control error often converges to zero and the identification converges.
URLhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4789155&queryText%3DADAPTIVE+BILINEAR+MODEL+PREDICTIVE+CONTROL

Pages