Pendulum system with Coulomb friction

Deprecation warning

This website is now archived. Please check out the new website for Centre for Intelligent Systems which includes both A-Lab Control Systems Research lab and Re:creation XR lab.

However, the Dynamic System Model Database can still be used and may be updated in the future.

Engine model operating under idle

Model description: 

The dynamic engine model, with parameters for a 1.6 liter, 4-cylinder fuel injected engine, is a two-input/two-output system, given by the following differential equations: $\dot{P}=k_P(\dot{m}_{ai}-\dot{m}_{ao}),$ where $k_p=42.40$

$\dot{N}=k_N(T_i-T_L),$ where $k_N=54.26$

$\dot{m}_{ai}=(1+0.907\theta+0.0998\theta^2)g(P)$

$g{P}= \begin{cases} 1, & P<50.6625 \\ 0.0197(101.325P - P^2)^{\frac{1}{2}}, &P \geq 50.6625 \end{cases}$

$\dot{m}_{ao} = -0.0005968N-0.1336P+0.0005341NP+0.000001757NP^2$

$m_{ao} = \dot{m}_{ao}(t-\tau)/(120N), \ \tau=45/N$

$T_i = -39.22+325024m_{ao}-0.0112\delta^2+0.635\delta+(0.0216+0.000675\delta)N(2\pi/60)-0.000102N^2(2\pi/60)^2$

$T_L = (N/263.17)^2+T_d$.

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleNeurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
Publication TypeJournal Article
Year of Publication1994
AuthorsPuskorius, G.V., and Feldkamp L.A.
JournalIEEE Transactions on Neural Networks
Volume5
Issue2
Start Page279
Pagination279-297
Date Published1994
ISSN1045-9227
Accession Number4685633
Keywordsfiltering and prediction theory, Kalman filters, nonlinear control systems, Nonlinear dynamical systems, recurrent neural nets
AbstractAlthough the potential of the powerful mapping and representational capabilities of recurrent network architectures is generally recognized by the neural network research community, recurrent neural networks have not been widely used for the control of nonlinear dynamical systems, possibly due to the relative ineffectiveness of simple gradient descent training algorithms. Developments in the use of parameter-based extended Kalman filter algorithms for training recurrent networks may provide a mechanism by which these architectures will prove to be of practical value. This paper presents a decoupled extended Kalman filter (DEKF) algorithm for training of recurrent networks with special emphasis on application to control problems. We demonstrate in simulation the application of the DEKF algorithm to a series of example control problems ranging from the well-known cart-pole and bioreactor benchmark problems to an automotive subsystem, engine idle speed control. These simulations suggest that recurrent controller networks trained by Kalman filter methods can combine the traditional features of state-space controllers and observers in a homogeneous architecture for nonlinear dynamical systems, while simultaneously exhibiting less sensitivity than do purely feedforward controller networks to changes in plant parameters and measurement noise.
DOI10.1109/72.279191

Continuous flow stirred tank reactor

Model description: 

Coupled nonlinear differential equations describing a process involving a continuous flow stirred tank reactor are given by

$$\begin{align*} \dot{C}_1 &= -C_1u + C_1(1-C_2)e^{C_2/\Gamma} \\ \dot{C}_2 &= -C_2u + C_1(1-C_2)e^{C_2/\Gamma}\dfrac{1+\beta}{1+\beta-C_2}. \end{align*}$$

In these equations, the state variables $C_1$ and $C_2$ represent dimensionless forms of cell mass and amount of nutrients in a constant volume tank, bounded between zero and unity. The control $u$ is the flow rate of nutrients into the tank, and is the same rate at which contents are removed from the tank. The constant parameters $\Gamma$ and $\beta$ determine the rates of cell formation and nutrient consumption; these parameters are set to $\Gamma$= 0.48 and $\beta$ = 0.02 for the nominal benchmark specification.

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleNeurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
Publication TypeJournal Article
Year of Publication1994
AuthorsPuskorius, G.V., and Feldkamp L.A.
JournalIEEE Transactions on Neural Networks
Volume5
Issue2
Start Page279
Pagination279-297
Date Published1994
ISSN1045-9227
Accession Number4685633
Keywordsfiltering and prediction theory, Kalman filters, nonlinear control systems, Nonlinear dynamical systems, recurrent neural nets
AbstractAlthough the potential of the powerful mapping and representational capabilities of recurrent network architectures is generally recognized by the neural network research community, recurrent neural networks have not been widely used for the control of nonlinear dynamical systems, possibly due to the relative ineffectiveness of simple gradient descent training algorithms. Developments in the use of parameter-based extended Kalman filter algorithms for training recurrent networks may provide a mechanism by which these architectures will prove to be of practical value. This paper presents a decoupled extended Kalman filter (DEKF) algorithm for training of recurrent networks with special emphasis on application to control problems. We demonstrate in simulation the application of the DEKF algorithm to a series of example control problems ranging from the well-known cart-pole and bioreactor benchmark problems to an automotive subsystem, engine idle speed control. These simulations suggest that recurrent controller networks trained by Kalman filter methods can combine the traditional features of state-space controllers and observers in a homogeneous architecture for nonlinear dynamical systems, while simultaneously exhibiting less sensitivity than do purely feedforward controller networks to changes in plant parameters and measurement noise.
DOI10.1109/72.279191

Cart plus crane plus hammer

Model description: 

The Euler-Lagrange equations of motion of the system are given as follows

$$\begin{pmatrix} (M+m) & mL\cos{q_1} & 0\\ mL\cos{q_1} & mL^2+\Theta & \dfrac{\Theta}{2}\\ 0 & \dfrac{\Theta}{2} & \Theta \end{pmatrix} \begin{pmatrix} \ddot{x}\\ \ddot{q_1}\\ \ddot{q_2} \end{pmatrix} + \begin{pmatrix} -mL\sin{q_1\dot{q_1}^2}\\ -mLg_g\sin{q_1}\\ 0 \end{pmatrix} = \begin{pmatrix} Q_x\\ Q_1\\ Q_2 \end{pmatrix},$$

where $Q_x (N)$ is the generalized force pushing the cart in the horizontal “$x$” direction, $Q_1$ and $Q_2$ are torques in $(N · m)$ rotating the beam of the crane around a horizontal axis orthogonal to “$x$” and counter-rotating the hamper at the free end of the beam to avoid turning out the worker from the hamper. $L (m)$ denotes the lenght of the crane’s beam, $g_g$ ($m/s^2$) is the gravitational acceleration, $m$ ($kg$) and $\Theta$ $(kg · m^2)$ denote the momentum (with respect to its own center of mass that was supposed to be on the rotational axle) and the mass of the hamper.

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleAnalysis of the Fixed Point Transformation Based Adapive Robot Control
Publication TypeConference Paper
Year of Publication2008
AuthorsTar, J.K., and Rudas I.J.
Conference NameInternational Conference on Intelligent Engineering Systems, 2008. INES 2008.
Date Published02/2008
PublisherIEEE
Conference LocationMiami, FL
ISBN Number978-1-4244-2082-7
Accession Number9965899
Keywordsadaptive control, asymptotic stability, initial value problems, iterative methods, MIMO systems, nonlinear control systems, robots, singular value decomposition
AbstractIn this paper the properties of a novel adaptive nonlinear control recently developed at Budapest Tech for "Multiple Input-Multiple Output (MIMO) Systems" is compared with that of the sophisticated "Adaptive Control by Slotine & Li" widely used in robot control literature. While this latter traditional method utilizes very subtle details of the structurally and formally exact analytical model of the robot in each step of the control cycle in which only the exact values of the parameters are unknown, the novel approach is based on simple geometric considerations concerning the method of the "Singular Value Decomposition (SVD)". Furthermore, while the proof of the asymptotic stability and convergence to an exact trajectory tracking of Slotine's & Li's control is based on "Lyapunov's 2nd Method", in the new approach the control task is formulated as a Fixed Point Problem for the solution of which a Contractive Mapping is created that generates an Iterative Cauchy Sequence. Consequently it converges to the fixed point that is the solution of the control task. Besides the use of very subtle analytical details the main drawback of the Slotine & Li method is that it assumes that the generalized forces acting on the controlled system are exactly known and are equal with that exerted by the controlled drives. So unknown external perturbations can disturb the operation of this sophisticated method. In contrast to that, in the novel method the computationally relatively costly SVD operation on the formally almost exact model need not to be done within each control cycle: it has to be done only one times before the control action is initiated. In the control cycle the inertia matrix is modeled only by a simple scalar. In a more general case the SVD of some approximate model can be done only in a few typical points of the state space of a Classical Mechanical System. To illustrate the usability of the proposed method adaptive control of a Classical M- echanical paradigm, a cart plus crane plus hamper system is considered and discussed by the use of simulation results.
DOI10.1109/INES.2008.4481264

Coupled electric drives

Model description: 

This particular laboratory-scale process simulates the actual industrial problems in tension and speed controls as they occur in magnetic tape drives, textile machines, paper mills, strip metal production plants, etc. To simulate these problems. the coupled electric drives consists of two similar servo-motors which drive a jockey pulley via a continuous flexible belt (see attached image).The jockey pulley assembly constitutes a simulated work station. The basic control problem is to regulate the belt speed and tension by varying the two servo-motor torque.

The structure of the transfer function matrix model (numerator and denominator orders of each transfer function) have been determined from the theoretical modelling of the coupled electric drive system which has given

$$\begin{bmatrix} Y_1(s)\\ Y_2(s) \end{bmatrix} =G(s) \begin{bmatrix} U_1(s)\\ U_2(s) \end{bmatrix}$$

with

$ G(s) = \begin{bmatrix} \dfrac{b_{1,1,0}}{s^2+a_{11}s+a_{12}} & \dfrac{b_{1,2,0}}{s^2+a_{11}s+a_{12}}\\ \dfrac{b_{2,1,0}s+b_{2,1,1}}{s^3+a_{21}s^2+a_{22}s+a_{23}} & \dfrac{b_{2,2,0}}{s^3+a_{21}s^2+a_{22}s+a_{23}} \end{bmatrix} $

The inputs $U(s)$ to the system are the drive voltages to the servo-motor power amplifiers. The outputs $Y_1(s)$ and $Y_2(s)$ are the jockey pulley velocity and the belt tension respectively.

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleA new bias-compensating least-squares method for continuous-time MIMO system identification applied to a laboratory-scale process
Publication TypeConference Paper
Year of Publication1994
AuthorsGarnier, H., Sibille P., and Nguyen H.L.
Conference NameProceedings of the Third IEEE Conference on Control Applications, 1994.
Date Published08/1994
PublisherIEEE
Conference LocationGlasgow
ISBN Number0-7803-1872-2
Accession Number4880903
Keywordscontinuous time systems, identification, least squares approximations, MIMO systems, process control, stochastic processes, transfer function matrices
AbstractThis paper presents a new bias-compensating least-squares method for the identification of continuous-time transfer function matrix model of multi-input multi-output (MIMO) systems. The proposed method uses the generalised Poisson moment functional approach for handling time derivatives and is applied to the identification of a laboratory-scale process which simulates industrial material transport control problems. Model validation results show the potentiality of the proposed method in practical applications
DOI10.1109/CCA.1994.381459

Pendulum system with Coulomb friction

Model description: 

Consider a pendulum system with Coulomb friction and external perturbation

$$ \ddot {\theta} = \frac{1}{J}u - \frac{g}{L}\sin \theta - \frac{V_s}{J}\dot{\theta } - \frac{P_s}{J}\mathrm{sgn}(\dot{\theta}) + \upsilon, $$

where parameters have the following values $M=1.1$, $L=0.9$, $J=ML^2=0.891$, $V_s=0.18$, $P_s=0.18$, $P_s=0.45$, $g=9.815$, and $v$ is an uncertain external perturbation $|\upsilon| \leq 1$.

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleA Simple Nonlinear Observer for a Class of Uncertain Mechanical Systems
Publication TypeJournal Article
Year of Publication2007
AuthorsSu, Yuxin, Müller P.C., and Zheng Chunhong
JournalIEEE Transactions on Automatic Control
Volume52
Issue7
Start Page1340
Pagination1340-1345
Date Published07/2007
ISSN0018-9286
Accession Number9606706
Keywordsasymptotic stability, MIMO systems, nonlinear control systems, observers, uncertain systems
AbstractA simple nonlinear observer is proposed for a class of uncertain nonlinear multiple-input-multiple-output (MIMO) mechanical systems whose dynamics are first-order differentiable. The global asymptotic observation of the proposed observer is proved. Thus, the observer can be designed independently of the controller. Furthermore, the proposed observer is formulated without any detailed model knowledge of the system. These advantages make it easy to implement. Numerical simulations are included to illustrate the effectiveness of the proposed observer.
DOI10.1109/TAC.2007.900851

Pages