Continuous flow stirred tank reactor

Model description: 

Coupled nonlinear differential equations describing a process involving a continuous flow stirred tank reactor are given by

$$\begin{align*} \dot{C}_1 &= -C_1u + C_1(1-C_2)e^{C_2/\Gamma} \\ \dot{C}_2 &= -C_2u + C_1(1-C_2)e^{C_2/\Gamma}\dfrac{1+\beta}{1+\beta-C_2}. \end{align*}$$

In these equations, the state variables $C_1$ and $C_2$ represent dimensionless forms of cell mass and amount of nutrients in a constant volume tank, bounded between zero and unity. The control $u$ is the flow rate of nutrients into the tank, and is the same rate at which contents are removed from the tank. The constant parameters $\Gamma$ and $\beta$ determine the rates of cell formation and nutrient consumption; these parameters are set to $\Gamma$= 0.48 and $\beta$ = 0.02 for the nominal benchmark specification.

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleNeurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
Publication TypeJournal Article
Year of Publication1994
AuthorsPuskorius, G.V., and Feldkamp L.A.
JournalIEEE Transactions on Neural Networks
Volume5
Issue2
Start Page279
Pagination279-297
Date Published1994
ISSN1045-9227
Accession Number4685633
Keywordsfiltering and prediction theory, Kalman filters, nonlinear control systems, Nonlinear dynamical systems, recurrent neural nets
AbstractAlthough the potential of the powerful mapping and representational capabilities of recurrent network architectures is generally recognized by the neural network research community, recurrent neural networks have not been widely used for the control of nonlinear dynamical systems, possibly due to the relative ineffectiveness of simple gradient descent training algorithms. Developments in the use of parameter-based extended Kalman filter algorithms for training recurrent networks may provide a mechanism by which these architectures will prove to be of practical value. This paper presents a decoupled extended Kalman filter (DEKF) algorithm for training of recurrent networks with special emphasis on application to control problems. We demonstrate in simulation the application of the DEKF algorithm to a series of example control problems ranging from the well-known cart-pole and bioreactor benchmark problems to an automotive subsystem, engine idle speed control. These simulations suggest that recurrent controller networks trained by Kalman filter methods can combine the traditional features of state-space controllers and observers in a homogeneous architecture for nonlinear dynamical systems, while simultaneously exhibiting less sensitivity than do purely feedforward controller networks to changes in plant parameters and measurement noise.
DOI10.1109/72.279191