Nonlinear System (2)

Continuous stirred-tank reactor system

Model description: 

The following CSTR system developed by Liu(1967). The reaction is exothermic first-order, $A \rightarrow B$, and is given by the following mass and energy balances. One should notice that the energy balance includes cooling water jacket dynamics. The following model was identified using regression techniques on the energy balance equations:

$$\begin{align*} y(k) &= 1.3187y(k-1) - 0.2214y(k-2) - 0.1474y(k-3) \\ &- 8.6337u(k-1) + 2.9234u(k-2) + 1.2493u(k-3) \\ &- 0.0858y(k-1)u(k-1) + 0.0050y(k-2)u(k-1) \\ &+ 0.0602y(k-2)u(k-2) + 0.0035y(k-3)u(k-1) \\ &- 0.0281y(k-3)u(k-2) + 0.0107y(k-3)u(k-3). \end{align*}$$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Autonomity: 

Publication details: 

TitleIdentification and Control of Bilinear Systems
Publication TypeConference Paper
AuthorsBartee, James F., and Georgakis Christos

Nonlinear System (2)

Model description: 

Consider the nonlinear system

$$\begin{align*} y_{1}(k+1)&={{2.5y_{1}(k)y_{1}(k-1)}\over{1+y_{1}(k)^{2}+y_{2}(k-1)^{2}+y_{1}(k-2)^{2}}} \\ &+0.09u_{1}(k)u_{1}(k-1)+1.2u_{1}(k)+1.6u_{1}(k-2) \\ &+0.5u_{2}(k)+0.7\sin (0.5(y_{1}(k)+y_{1}(k-1))) \\ &\times\cos (0.5(y_{1}(k)+y_{1}(k-1))) \\ y_{2}(k+1)&=\displaystyle{{5y_{2}(k)y_{2}(k-1)}\over{1+y_{2}(k)^{2}+y_{1}(k-1)^{2}+y_{2}(k-2)^{2}}} \\ &+u_{2}(k)+1.1u_{2}(k-1)+1.4u_{2}(k-2) \\ &+0.5u_{1}(k). \end{align*}$$

The initial values are: $y_1(1)=y_1(3)=0$, $y_1(2)=1$, $y_2(1)=y_1(3)=0$, $y_2(2)=1$, $u(1)=u(2)=[0,0]^{\mathrm T}$

Type: 

Form: 

Model order: 

3

Time domain: 

Linearity: 

Autonomity: 

Publication details: 

TitleData-Driven Model-Free Adaptive Control for a Class of MIMO Nonlinear Discrete-Time Systems
Publication TypeJournal Article
AuthorsHou, Zhongsheng, and Jin ShangTai