Bilinear system

Deprecation warning

This website is now archived. Please check out the new website for Centre for Intelligent Systems which includes both A-Lab Control Systems Research lab and Re:creation XR lab.

However, the Dynamic System Model Database can still be used and may be updated in the future.

Muscle-knee state space model

Model description: 

The state model of the knee-quadriceps can be expressed as

$$\begin{cases} \begin{align*} \dot{x}_1 &= \left[ s_0 \alpha K_m + s_v q\dfrac{s_0\alpha F_mx_1 - s_ux_2x_1}{1 + px_1 - s_vqx_2}\right] u_{ch} - s_ux_1u_{ch} - \dfrac{s_v ax_1 r_p x_4}{L_0 (1+px_1-s_vqx_2)}\\ \dot{x}_2 &= \left[ \dfrac{s_0\alpha F_m - s_ux_2}{1 + px_1 - s_vqx_2} \right]u_{ch} + \dfrac{bx_1r_px_4 - s_vax_2r_px_4}{L_0(1+px_1-s_vqx_2)}\\ \dot{x}_3 &= x_4\\ \dot{x}_4 &= \dfrac{1}{I}[x_2r_p - \lambda x_3 - \mu x_4 - mgl_c \cos{x_3}], \end{align*} \end{cases}$$

where $\textbf{x}=[x_1, \ldots, x_4]^{\mathrm T} = [K_c, F_c, \theta, \dot{\theta}]^{\mathrm T}$ is the state vector and $\textbf{u}=[u_{ch},\alpha ]^{\mathrm T}$ the control vector. The variable $\theta$ represents the knee joint angle and the variables $K_c, F_c, u_{ch}, \alpha$ represent the state variables of the quadriceps muscle model.

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleToward lower limbs movement restoration with input-output feedback linearization and model predictive control through functional electrical stimulation
Publication TypeJournal Article
Year of Publication2012
AuthorsMohammed, S., Poignet P., Fraisse P., and Guiraud D.
JournalControl Engineering Practice
Volume20
Issue2
Pagination182-195
Date Published02/2012
ISSN0967-0661
KeywordsFunctional electrical stimulation, Input–output feedback linearization, Model predictive control, Muscle modeling, Rehabilitation engineering
DOI10.1016/j.conengprac.2011.10.010

Tension leg platform system

Model description: 

The present study of tension leg platform is the first commercial application of a revolutionary design of offshore production platform developed by well-known oil company. Intended for oil and gas production in water depths beyond the reach of traditional fixed structures, the tension leg platform was designed as a rectangular shaped floating platform which was connected to the ocean floor by 16 vertical steel tethers or legs, four per corner. The legs were kept in tension so that vertical movement was suppressed, while limited horizontal movement may occur.

The estimation model is:

$$\begin{align*} y(k) &= 0.590y(k − 3)+1.0598y(k − 1) − 1.0931y(k − 2) + 121.13u(k − 1)u(k− 1)u(k − 9) \\ &− 116.54u(k − 6)u(k − 6)u(k− 6) − 19.797u(k − 4)u(k − 8)u(k − 8) \\ &+ 214.04u(k − 5)u(k − 9) − 34.877u(k− 1)u(k − 1)u(k − 1) − 3.7983u(k − 1)u(k− 2)u(k − 7) \\ &− 25.04u(k − 4)u(k − 8)u(k− 11) + 165.93u(k − 2)u(k − 3)u(k − 4) \\ &− 173.85u(k − 6)u(k − 7) − 69.693u(k− 4)u(k − 12) + 203.12u(k − 5)u(k − 6)u(k − 6) \\ &+ 727.86u(k − 2)u(k − 3)u(k − 5) − 11.107u(k− 3)u(k − 10)u(k − 11) \\ &+ 11.506u(k − 6)u(k− 6)u(k − 12) − 68.607u(k − 2)u(k − 4)u(k− 6) \\ &− 366.75u(k − 3)u(k − 5)u(k − 6)− 25.696u(k − 4)u(k − 8)u(k − 12) \\ &+ 137.86u(k − 1)u(k − 2)u(k − 5)− 142.24u(k − 2)u(k − 2)u(k − 9) \\ &+ 101.44u(k− 1)u(k − 6)u(k − 9) − 9.0283u(k − 3)u(k− 3)u(k − 12) \\ &− 168.30u(k − 2)u(k − 5)u(k − 6)+ 30.295u(k − 5)u(k − 6)u(k − 8) \\ &− 0.158u(k− 1)u(k − 2)u(k − 2) − 433.21u(k − 2)u(k− 2)u(k − 4) \\ &+ 39.88u(k − 3)u(k − 8)u(k − 11)− 162.26u(k − 1)u(k − 4)u(k − 11) \\ &− 212.08u(k− 1)u(k − 1)u(k − 5) − 438.7u(k − 3)u(k− 3)u(k − 5) \\ &+ 162.15u(k − 2)u(k − 4)u(k − 11)− 3.607u(k − 4)u(k − 4)u(k − 11) \\ &+ 13.262u(k− 6)u(k − 9)u(k − 9)+448.4u(k − 3)u(k − 4)u(k− 6) \\ &− 46.475u(k − 4)u(k − 4)u(k − 9) + 119.95u(k − 1)u(k − 1)u(k − 2) + noise \:terms. \end{align*}$$

Here, the input is the wave, and the output is the pitch. Sample rate is 2.2473 Hz

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleNon-linear pitch motion identification and interpretation of a tension leg platform
Publication TypeJournal Article
Year of Publication2004
AuthorsLiu, Jui-Jung, Huang Yun-Fu, and Lin Hung-Wei
JournalJournal of Marine Science and Technology
Volume12
Issue4
Start Page309
Pagination309-318
Date Published01/2004
ISSN0948-4280
AbstractThe present study is concerned with the identification of the non-linear wave force effects known as 'ringing' on an offshore structure. Ringing is a highly non-linear behaviour in which the motion resonances are outside the region of dominating wave energy. The purpose of this paper is to provide a better prediction of the higher frequency responses of wave forces on the cylinder and to interpret the non-linear effects of 'ringing' using the NARMAX method and the higher order frequency response functions.
URLhttp://jmst.ntou.edu.tw/marine/12-4/309-318.pdf

Time varying stochastic bilinear system with nonlinear feedback

Model description: 

Consider the following time varying stochastic bilinear system with nonlinear feedback.

$$\begin{align*} \begin{bmatrix} x_1(t+1) \\ x_2(t+1) \end{bmatrix} &= \left\{\begin{bmatrix}0.1 & 0.2 \\ 0.5 & -0.3\end{bmatrix} + \begin{bmatrix}0.36 & -0.3 \\ 0.2 & 0.42\end{bmatrix}\omega(t) \right\}\begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix} \\ &+\begin{bmatrix}0.1 & 0.9 \\ 1.5 & 1.2\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}u(t) + \begin{bmatrix}-0.3t^2\exp{(-t)} \\ 0.4t\exp{(-t)}\end{bmatrix}u(t), \\ \begin{bmatrix}y_1(t) \\ y_2(t)\end{bmatrix} &= \begin{bmatrix} 0.7\sin{t} & -0.9 \\ 0.8 & -0.6\cos{t}\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}, \end{align*}$$

where

$u(t)=0.2\sin{(y_1(t) + y_2(t))} + 0.3[y_1(t)+y_2(t)].$

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleRandom parameter discrete bilinear system stability
Publication TypeConference Paper
Year of Publication1989
AuthorsYang, Xueshan, Mohler R.R., and Chen Lung-Kee
Conference NameProceedings of the 28th IEEE Conference on Decision and Control, 1989.
Date Published12/1989
PublisherIEEE
Conference LocationTampa, FL
Accession Number3685072
Keywordsdiscrete systems, feedback, linear systems, noise, nonlinear systems, stability criteria, stochastic systems
AbstractStability of discrete, time-varying, stochastic, bilinear systems is studied. Bilinear systems with output feedback are included. Mean-square stability conditions are derived for stochastic models without the assumption of stationarity for the random noise. The feedback function includes a larger class of functions than the class of linear functions or functions satisfying the Lipschitz condition. The sufficient stabilizing conditions depend only on the coefficient matrices of the bilinear system
DOI10.1109/CDC.1989.70323

Time invariant stochastic bilinear system

Model description: 

Consider the following time invariant stochastic bilinear system:

$$\begin{align*} \begin{bmatrix}x_1(t+1)\\x_2(t+1)\end{bmatrix} &= \left\{ \begin{bmatrix}0.2 & 0.4 \\ 0.5 & -0.3\end{bmatrix} + \begin{bmatrix}0.3 & 0.2 \\ -0.3 & 0.4\end{bmatrix}\omega(t) \right\} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}+ \begin{bmatrix}2 & 5 \\ 3 & 9\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}u(t) + \begin{bmatrix}-0.3 \\ 0.4\end{bmatrix}u(t), \\ \begin{bmatrix}y_1(t) \\ y_2(t)\end{bmatrix}& = \begin{bmatrix} 0.7 & 0.8 \\ -0.9 & -0.6\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}, \end{align*}$$

where

$u(t)=0.24[y_1(t) + y_2(t)] + 0.32[y_1(t-1) + y_2(t-1)]$

and $\omega(t)$ is a white noise with zero mean and variance 0.2.

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleRandom parameter discrete bilinear system stability
Publication TypeConference Paper
Year of Publication1989
AuthorsYang, Xueshan, Mohler R.R., and Chen Lung-Kee
Conference NameProceedings of the 28th IEEE Conference on Decision and Control, 1989.
Date Published12/1989
PublisherIEEE
Conference LocationTampa, FL
Accession Number3685072
Keywordsdiscrete systems, feedback, linear systems, noise, nonlinear systems, stability criteria, stochastic systems
AbstractStability of discrete, time-varying, stochastic, bilinear systems is studied. Bilinear systems with output feedback are included. Mean-square stability conditions are derived for stochastic models without the assumption of stationarity for the random noise. The feedback function includes a larger class of functions than the class of linear functions or functions satisfying the Lipschitz condition. The sufficient stabilizing conditions depend only on the coefficient matrices of the bilinear system
DOI10.1109/CDC.1989.70323

Bilinear system

Model description: 

The time-invariant bilinear system is given by

$$Y(t) = 1.5X(t) + 1.2X(t-1) - 0.2X(t-2) + 0.7X(t-1)Y(t-1) - 0.1X(t-2)Y(t-2) + \epsilon(t),$$

where $A=0, \alpha=0, B=\begin{bmatrix}1.5 &1.2 &-0.2\end{bmatrix}, C = \begin{bmatrix}0.7 &0 &-0.1\end{bmatrix}$. Note that $\Theta = \begin{bmatrix}B & C\end{bmatrix}^{\mathrm T}.$

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleIdentification of bilinear systems using Bayesian inference
Publication TypeConference Paper
Year of Publication1998
AuthorsMeddeb, S., Tourneret J.Y., and Castanie F.
Conference NameProceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998.
Date Published05/1998
PublisherIEEE
Conference LocationSeattle, WA
ISBN Number0-7803-4428-6
Accession Number6053933
KeywordsBayes methods, bilinear systems, discrete time systems, inference mechanisms, Markov processes, Monte Carlo methods, parameter estimation, signal sampling
AbstractA large class of nonlinear phenomena can be described using bilinear systems. Such systems are very attractive since they usually require few parameters, to approximate most nonlinearities (compared to other systems). This paper addresses the problems of bilinear system identicalness using Bayesian inference. The Gibbs sampler is used to estimate the bilinear system parameters, from measurements of the system input and output signals
DOI10.1109/ICASSP.1998.681761

Pages