A linear system

Model description: 

Consider a linear system represented by the transfer function

$$G(s)=\dfrac{c}{s(s+a)}$$

where $a$ and $c>0$ are unknowns constants, and the reference model

$$G_m(s)=\dfrac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}.$$

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Attachment: 

Publication details: 

TitleAdaptive output feedback control of nonlinear systems represented by input-output models
Publication TypeJournal Article
Year of Publication1996
AuthorsKhalil, H.K.
JournalIEEE Transactions on Automatic Control
Volume41
Issue2
Start Page177
Pagination177-188
Date Published02/1996
ISSN0018-9286
Accession Number5202146
Keywordsadaptive control, linearisation techniques, nonlinear control systems, state feedback
AbstractWe consider a single-input-single-output nonlinear system which can be represented globally by an input-output model. The system is input-output linearizable by feedback and is required to satisfy a minimum phase condition. The nonlinearities are not required to satisfy any global growth condition. The model depends linearly on unknown parameters which belong to a known compact convex set. We design a semiglobal adaptive output feedback controller which ensures that the output of the system tracks any given reference signal which is bounded and has bounded derivatives up to the nth order, where n is the order of the system. The reference signal and its derivatives are assumed to belong to a known compact set. It is also assumed to be sufficiently rich to satisfy a persistence of excitation condition. The design process is simple. First we assume that the output and its derivatives are available for feedback and design the adaptive controller as a state feedback controller in appropriate coordinates. Then we saturate the controller outside a domain of interest and use a high-gain observer to estimate the derivatives of the output. We prove, via asymptotic analysis, that when the speed of the high-gain observer is sufficiently high, the adaptive output feedback controller recovers the performance achieved under the state feedback one
DOI10.1109/9.481517