Model description:
$$\dot{x}=A_Fx+b_F\tau+e_F(x)$$
with
$A_S = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -K \dfrac{m_n}{\beta_F} & -C \dfrac{m_n}{\beta_F} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -K \dfrac{m_{bnt}}{\beta_F} & -C \dfrac{m_{bnt}}{\beta_F} \\ \end{bmatrix},\\ x = \begin{bmatrix} z\\ \dot{z}\\ p\\ \dot{p} \end{bmatrix}, b_F = \dfrac{\eta}{\beta_{F}r} \begin{bmatrix} 0\\ m_n\\ 0\\ m_{bn} \end{bmatrix},\\ e_F(x)=\dfrac{1}{\beta_F} \begin{bmatrix} 0\\ \alpha(m_{bnt}g + f_{fF} + m_n(m_ng - k(s_0 - l_0) - f_p))\\ 0\\ -m_nf_{fF} - m_{bnt}(k(s_0-l_0) + f_a)\\ \end{bmatrix}. $
$z$ | Body Height | |
$p$ | Actuator Length | |
$\tau$ | Motor Torque | |
$\theta$ | Motor angle, $\theta = p/r$ | |
$s$ | Spring Length | |
$m_b$ | 9.5kg | Upper Leg Mass |
$m_n$ | 0.25kg | Ball Nut Mass |
$m_t$ | 0.5kg | Toe Mass |
$k$ | 400 N/m | Spring Constant |
$F_p$ | 5.0N | Leg Dry Friction |
$F_z$ | 1.5N | Planarized Dry Friction |
$F_a$ | 0N | Ball Screw Dry Friction |
$c$ | 5.5Ns/m | Spring Viscous Friction |
$\hat{\tau}$ | 1.78Nm | Stall Torque |
$\hat{\omega}$ | 2800RPM | Max Speed |
$\eta$ | 0.95 | Ball Screw Efficiency |
$s_0$ | 0.608m | Spring Rest Length |
$l_0$ | 0.595m | Maximum Leg Length |
$J$ | 2.7$\times$10$^{-4}$kgm$^2$ | Motor Inertia |
$\alpha$ | 0.34kgm | $J/r^2+m_n$ |
$\mu$ | 0.05 | $m_t/m_{bnt}$ |
Type:
Form:
Model order:
4
Time domain:
Linearity:
Publication details:
Title | Design, modeling and control of a hopping robot |
Publication Type | Conference Paper |
Year of Publication | 1993 |
Authors | Rad, H., Gregorio P., and Buehler M. |
Conference Name | Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems '93, IROS '93. |
Date Published | 06/1993 |
Publisher | IEEE |
Conference Location | Yokohama |
ISBN Number | 0-7803-0823-9 |
Accession Number | 5050001 |
Keywords | legged locomotion |
Abstract | The authors report progress towards model based, dynamically stable legged locomotion with energy efficient, electrically actuated robots. The present the mechanical design of a prismatic robot leg which is optimized for electrical actuation. A dynamical model of the robot and the actuator as well as the interaction with ground is derived and validated by demonstrating close correspondence between simulations and experiments. A new continuous, and exactly implementable open loop torque control algorithm is introduced which stabilizes a limit cycle of the underlying fourth order intermittent robot/actuator/environment dynamics |
DOI | 10.1109/IROS.1993.583877 |