Dynamic Feedback Linearization of Nonlinear Control Systems on Homogenous Time Scale

Juri Belikov

Institute of Cybernetics, Tallinn University of Technology

jbelikov@cc.ioc.ee

October 9, 2014

Time scale is a model of time

Definition

A time scale \mathbb{T} is an arbitrary nonempty closed subset of the set \mathbb{R} of real numbers.

 $\mathbb{T} = \mathbb{R}$ continuous time

$$\mathbb{T} = \mathbb{Z}$$
 discrete time

$$\mathbb{T} = \tau \mathbb{Z} := \{ \tau k \mid k \in \mathbb{Z} \}, \ \tau > 0$$
 discrete time

$$\mathbb{T} = \mathbb{P}_{a,b} := \bigcup_{k=0}^{\infty} [k(a+b), k(a+b) + a]$$

$$\mathbb{T} = \mathbb{H} := \left\{ 0, \sum_{k=1}^{n} \frac{1}{k} \mid n \in \mathbb{N} \right\}$$

▶ The forward jump operator $\sigma: \mathbb{T} \to \mathbb{T}$ is defined by

$$\sigma(t) := \inf \left\{ \tau \in \mathbb{T} \mid \tau > t \right\}.$$

lacktriangle The backward jump operator $ho:\mathbb{T} o \mathbb{T}$ is defined by

$$\rho(t) := \inf\{\tau \in \mathbb{T} \mid \tau > t\}.$$

▶ The graininess function $\mu : \mathbb{T} \to [0, \infty)$ is defined by

$$\mu(t) := \sigma(t) - t.$$

A time scale \mathbb{T} is called homogeneous if $\mu \equiv \text{const.}$

Definition

Delta derivative of $f(t): \mathbb{T} \to \mathbb{R}$, denoted by $f^{\Delta}(t)$, can be defined as the extension of standard time-derivative in the continuous-time case.

time scale	f [∆] (t)	delta derivative
$\mathbb{T}=\mathbb{R}$	$\frac{\mathrm{d}f(t)}{\mathrm{d}t}$	time derivative
$\mathbb{T} = \tau \mathbb{Z}, \ \tau > 0$	$\frac{f(t+\tau)-f(t)}{\tau}$	difference operator

Consider a multi-input nonlinear dynamical system, defined on homogeneous time scale $\mathbb T$ and described by the state equations

$$x^{\Delta} = f(x, u), \tag{1}$$

where

- $ightharpoonup x: \mathbb{T} o \mathbb{X} \subset \mathbb{R}^n$ is an *n*-dimensional state vector;
- ▶ $u : \mathbb{T} \to \mathbb{U} \subset \mathbb{R}^m$ is an m-dimensional input vector;
- $f: \mathbb{X} \times \mathbb{U} \to \mathbb{X}$ is assumed to be real analytic function.

$$\mathcal{C} = \left\{ x_1, \dots, x_n; \ u_1^{\langle k \rangle}, \dots, u_m^{\langle k \rangle}, k \geq 0 \right\}.$$

- ▶ The pair (K, σ_f) is a σ_f -differential field.
- $\triangleright \mathcal{K}^*$ denotes the inversive closure of \mathcal{K} .
- ▶ Consider the infinite set of symbols $d\mathcal{C}^* = \{d\zeta_i, \zeta \in \mathcal{C}^*\}$ and define by $\mathcal{E} := \operatorname{span}_{\mathcal{K}^*} d\mathcal{C}^*$ the vector space spanned over the field \mathcal{K}^* with

$$C^* = \left\{ \begin{matrix} \mathcal{C}, & \text{if } \mu = 0 \\ \mathcal{C} \cup \left\{ z^{\langle -\ell \rangle} \mid \ell \geq 1 \right\}, & \text{if } \mu \neq 0 \end{matrix} \right.$$

ightharpoonup Any element of ${\cal E}$ is called differential one-form

$$\mathcal{C} = \left\{x_1, \dots, x_n; \ u_1^{\langle k \rangle}, \dots, u_m^{\langle k \rangle}, k \geq 0 \right\}.$$

- ▶ The pair (K, σ_f) is a σ_f -differential field.
- $\triangleright \mathcal{K}^*$ denotes the inversive closure of \mathcal{K} .
- ▶ Consider the infinite set of symbols $d\mathcal{C}^* = \{d\zeta_i, \zeta \in \mathcal{C}^*\}$ and define by $\mathcal{E} := \operatorname{span}_{\mathcal{K}^*} d\mathcal{C}^*$ the vector space spanned over the field \mathcal{K}^* with

$$\mathcal{C}^* = \left\{ \begin{aligned} \mathcal{C}, & \text{if } \mu = 0 \\ \mathcal{C} \cup \left\{ z^{\langle -\ell \rangle} \mid \ell \geq 1 \right\}, & \text{if } \mu \neq 0 \end{aligned} \right.$$

 \triangleright Any element of \mathcal{E} is called differential one-form.

$$\mathcal{C} = \left\{x_1, \dots, x_n; \ u_1^{\langle k \rangle}, \dots, u_m^{\langle k \rangle}, k \geq 0 \right\}.$$

- ▶ The pair (K, σ_f) is a σ_f -differential field.
- $\triangleright \mathcal{K}^*$ denotes the inversive closure of \mathcal{K} .
- ▶ Consider the infinite set of symbols $d\mathcal{C}^* = \{d\zeta_i, \zeta \in \mathcal{C}^*\}$ and define by $\mathcal{E} := \operatorname{span}_{\mathcal{K}^*} d\mathcal{C}^*$ the vector space spanned over the field \mathcal{K}^* with

$$C^* = \left\{ \begin{matrix} \mathcal{C}, & \text{if } \mu = 0 \\ \mathcal{C} \cup \left\{ z^{\langle -\ell \rangle} \mid \ell \ge 1 \right\}, & \text{if } \mu \ne 0 \end{matrix} \right.$$

ightharpoonup Any element of $\mathcal E$ is called differential one-form.

$$\mathcal{C} = \left\{x_1, \dots, x_n; \ u_1^{\langle k \rangle}, \dots, u_m^{\langle k \rangle}, k \geq 0 \right\}.$$

- ▶ The pair (K, σ_f) is a σ_f -differential field.
- K* denotes the inversive closure of K.
- ▶ Consider the infinite set of symbols $d\mathcal{C}^* = \{d\zeta_i, \zeta \in \mathcal{C}^*\}$ and define by $\mathcal{E} := \operatorname{span}_{\mathcal{K}^*} d\mathcal{C}^*$ the vector space spanned over the field \mathcal{K}^* with

$$\mathcal{C}^* = egin{cases} \mathcal{C}, & ext{if } \mu = 0, \ \mathcal{C} \cup \left\{ z^{\langle -\ell
angle} \mid \ell \geq 1
ight\}, & ext{if } \mu
eq 0. \end{cases}$$

 \blacktriangleright Any element of $\mathcal E$ is called differential one-form.

$$\mathcal{C} = \left\{x_1, \dots, x_n; \ u_1^{\langle k \rangle}, \dots, u_m^{\langle k \rangle}, k \geq 0 \right\}.$$

- ▶ The pair (K, σ_f) is a σ_f -differential field.
- K* denotes the inversive closure of K.
- ▶ Consider the infinite set of symbols $d\mathcal{C}^* = \{d\zeta_i, \zeta \in \mathcal{C}^*\}$ and define by $\mathcal{E} := \operatorname{span}_{\mathcal{K}^*} d\mathcal{C}^*$ the vector space spanned over the field \mathcal{K}^* with

$$\mathcal{C}^* = egin{cases} \mathcal{C}, & ext{if } \mu = 0, \ \mathcal{C} \cup \left\{ z^{\langle -\ell
angle} \mid \ell \geq 1
ight\}, & ext{if } \mu
eq 0. \end{cases}$$

 \blacktriangleright Any element of $\mathcal E$ is called differential one-form.

Algebraic framework

A left polynomial can be uniquely written in the form $\pi(z) = \sum_{\ell=0}^{\kappa} \pi_{\ell} z^{\ell}$, $\pi_{\ell} \in \mathcal{K}^*$.

Definition

The skew polynomial ring, induced by σ_f -differential overfield \mathcal{K}^* , is the non-commutative ring $\mathcal{K}^*[z;\sigma_f,\Delta_f]$ of left polynomials in z with usual addition and multiplication satisfying, for any $\zeta\in\mathcal{K}^*\subset\mathcal{K}^*[z;\sigma_f,\Delta_f]$, the commutation rule

$$z\zeta := \zeta^{\sigma_f} z + \zeta^{\Delta_f}.$$

Let $\mathcal{K}^*[z; \sigma_f, \Delta_f]^{q \times q}$ denote the set of $q \times q$ polynomial matrices with entries in $\mathcal{K}^*[z; \sigma_f, \Delta_f]$.

Definition

A matrix $U(z) \in \mathcal{K}^*[z; \sigma_f, \Delta_f]^{q \times q}$ is called unimodular if there exists an inverse matrix $U^{-1}(z) \in \mathcal{K}^*[z; \sigma_f, \Delta_f]^{q \times q}$.

Algebraic framework

Skew polynomial ring

A left polynomial can be uniquely written in the form $\pi(z) = \sum_{\ell=0}^{\kappa} \pi_{\ell} z^{\ell}$, $\pi_{\ell} \in \mathcal{K}^*$.

Definition

The skew polynomial ring, induced by σ_f -differential overfield \mathcal{K}^* , is the non-commutative ring $\mathcal{K}^*[z;\sigma_f,\Delta_f]$ of left polynomials in z with usual addition and multiplication satisfying, for any $\zeta\in\mathcal{K}^*\subset\mathcal{K}^*[z;\sigma_f,\Delta_f]$, the commutation rule

$$z\zeta := \zeta^{\sigma_f}z + \zeta^{\Delta_f}.$$

Let $\mathcal{K}^*[z; \sigma_f, \Delta_f]^{q \times q}$ denote the set of $q \times q$ polynomial matrices with entries in $\mathcal{K}^*[z; \sigma_f, \Delta_f]$.

Definition

A matrix $U(z) \in \mathcal{K}^*[z; \sigma_f, \Delta_f]^{q \times q}$ is called unimodular if there exists an inverse matrix $U^{-1}(z) \in \mathcal{K}^*[z; \sigma_f, \Delta_f]^{q \times q}$.

Algebraic formalism Sequence of \mathcal{H}_k

A sequence of subspaces $\mathcal{H}_0 \supset \cdots \supset \mathcal{H}_{k^*} \supset \mathcal{H}_{k^*+1} = \mathcal{H}_{k^*+2} = \cdots =: \mathcal{H}_{\infty}$ of \mathcal{E} is defined by

$$\begin{split} \mathcal{H}_0 &:= \operatorname{span}_{\mathcal{K}^*} \{ \operatorname{d} x, \operatorname{d} u \}, \\ \mathcal{H}_k &:= \left\{ \omega \in \mathcal{H}_{k-1} \mid \omega^{\Delta_f} \in \mathcal{H}_{k-1} \right\}, \quad k \geq 1. \end{split}$$

The sequence plays a key role in the analysis of various structural properties of nonlinear systems, including accessibility and feedback linearization.

Algebraic formalism

Invertibility and structure at infinity

Consider system (1) and suppose that the output function y = h(x), $y \in \mathbb{Y} \subset \mathbb{R}^m$ is given. Define a chain of subspaces $\mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_n$ of \mathcal{E} as

$$\mathcal{E}_k = \operatorname{span}_{\mathcal{K}^*} \left\{ \operatorname{d} x, \operatorname{d} y, \operatorname{d} y^{\langle 1 \rangle}, \dots, \operatorname{d} y^{\langle k \rangle} \right\}$$

and associated list of dimensions $p_k := \dim_{\mathcal{K}^*} \mathcal{E}_k$.

- ▶ For k = 0, ..., n, $\varsigma_k := p_k p_{k-1}$ is the number of zeros at infinity of order less than or equal to k, with the convention $p_{-1} := n$.
- ► The rank p^* of the system is the total number of zeros at infinity, i.e., $p^* = \varsigma_n = p_n p_{n-1}$.
- ▶ System (1) is said to be invertible if $p^* = m$.

Remark

The structure at infinity can be expressed in different manners. For instance, the list $\{n'_1,\ldots,n'_{p^*}\}$ of the orders of the zeros at infinity is the list of integers k such that $\varsigma_k-\varsigma_{k-1}\neq 0$, each one repeated $\varsigma_k-\varsigma_{k-1}$ times.

▶ Static state feedback linearization

► Dynamic state feedback linearization

Definition

The Brunovsky (controller) canonical form of a system (1), defined on time scale, is introduced as

$$\xi_{1}^{\Delta} = \xi_{2} \qquad \cdots \qquad \qquad \xi_{r_{m-1}+1}^{\Delta} = \xi_{r_{m-1}+2}$$

$$\xi_{2}^{\Delta} = \xi_{3} \qquad \cdots \qquad \qquad \xi_{r_{m-1}+2}^{\Delta} = \xi_{r_{m-1}+3}$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$\xi_{n-1}^{\Delta} = \xi_{n} \qquad \cdots \qquad \qquad \xi_{r_{m}-1}^{\Delta} = \xi_{r_{m}}$$

$$\xi_{n}^{\Delta} = v_{1} \qquad \cdots \qquad \qquad \xi_{r_{m}}^{\Delta} = v_{m}$$

with $r_1 + \cdots + r_m = n$ and $r_m \leq \cdots \leq r_2 \leq r_1$.

Note that $v : \mathbb{T} \to \mathbb{V} \subset \mathbb{R}^m$ is a vector of new inputs.

Theorem

Suppose $\mathcal{H}_{\infty} = \{0\}$. Then, there exists a list of integers r_1, \ldots, r_m and m one-forms $\omega_1, \ldots, \omega_m \in \mathcal{H}_1$ whose relative degrees are, respectively, r_1, \ldots, r_m such that

- $\blacktriangleright \operatorname{span}_{\mathcal{K}^*}\left\{\omega_i^{\Delta_j^j}, \ i=1,\ldots,m, j=0,\ldots,r_j-1\right\} = \operatorname{span}_{\mathcal{K}^*}\left\{\mathrm{d}x\right\} = \mathcal{H}_1;$
- $\blacktriangleright \operatorname{span}_{\mathcal{K}^*} \left\{ \omega_i^{\Delta_j^j}, \ i = 1, \dots, m, j = 0, \dots, r_j \right\} = \operatorname{span}_{\mathcal{K}^*} \left\{ \mathrm{d} x, \mathrm{d} u \right\} = \mathcal{H}_0;$
- the one-forms $\left\{\omega_i^{\Delta_f^J},\ i=1,\ldots,m,j\geq 0\right\}$ are linearly independent; in particular

$$\sum_{i=1}^m r_i = n.$$

Theorem

System (1) is linearizable by regular static state feedback $u=\psi(x,v)$ iff $\mathcal{H}_{\infty}=\{0\}$ and \mathcal{H}_k , for $k=1,\ldots,k^*$, are integrable.

^aA compensator is called regular, if it is invertible, i.e., $\operatorname{rank}_{\mathcal{K}^*} \frac{\partial \psi}{\partial \nu} = m$

Theorem

Suppose $\mathcal{H}_{\infty}=\{0\}$. Then, there exists a list of integers r_1,\ldots,r_m and m one-forms $\omega_1,\ldots,\omega_m\in\mathcal{H}_1$ whose relative degrees are, respectively, r_1,\ldots,r_m such that

- $\blacktriangleright \operatorname{span}_{\mathcal{K}^*}\left\{\omega_i^{\Delta_j^j}, \ i=1,\ldots,m, j=0,\ldots,r_j-1\right\} = \operatorname{span}_{\mathcal{K}^*}\left\{\mathrm{d}x\right\} = \mathcal{H}_1;$
- lacktriangledown the one-forms $\left\{\omega_i^{\Delta_f^j},\ i=1,\ldots,m,j\geq 0
 ight\}$ are linearly independent; in particular

$$\sum_{i=1}^m r_i = n.$$

Theorem

System (1) is linearizable by regular static state feedback $u=\psi(x,v)$ iff $\mathcal{H}_{\infty}=\{0\}$ and \mathcal{H}_k , for $k=1,\ldots,k^*$, are integrable.

^aA compensator is called regular, if it is invertible, i.e., rank $\kappa^* \frac{\partial \psi}{\partial v} = m$.

- ► Static state feedback linearization
- ▶ Dynamic state feedback linearization

System (1) is said to be linearizable by dynamic state feedback if there exist a regular dynamic compensator of the form

$$\eta^{\Delta} = \zeta(x, \eta, \nu),
 u = \psi(x, \eta, \nu)$$
(2)

with $\eta \in \mathbb{R}^s$, and an extended coordinate transformation $\xi = \phi(x, \eta)$ such that, in the new coordinates, the compensated system (1) reads as

$$\xi^{\Delta} = A\xi + Bv,$$

where $\xi \in \mathbb{R}^{n+s}$ and the pair (A, B) is in Brunovsky canonical form.

Define the subspaces of $\mathcal E$ as $\mathcal X:=\operatorname{span}_{\mathcal K^*}\{\mathrm dx\}, \mathcal Y:=\operatorname{span}_{\mathcal K^*}\left\{\mathrm dy^{\langle k\rangle}, k\geq 0\right\}, \mathcal X_\nu:=\operatorname{span}_{\mathcal K^*}\{\mathrm dx,\mathrm du,\mathrm du^{\langle 1\rangle},\dots,\mathrm du^{\langle \nu-1\rangle}\}.$

Definition

A linearizing output is an output function $y = h\left(x, u, u^{\langle 1 \rangle}, \dots, u^{\langle \nu-1 \rangle}\right)$ that satisfies the following properties:

- $y = h\left(x, u, u^{\langle 1 \rangle}, \dots, u^{\langle \nu 1 \rangle}\right)$ defines an invertible system;

Dynamic state feedback linearization

Theorem

Suppose $\mathcal{H}_{\infty} = \{0\}$, and let $\Omega := \begin{bmatrix} \omega_1 & \dots & \omega_m \end{bmatrix}^T \in \mathcal{E}^m$ be a system of linearizing one-forms for system (1). Then, there exists a system of linearizing outputs iff there exists a unimodular polynomial matrix $U(z) \in \mathcal{K}^*[z; \sigma_f, \Delta_f]^{m \times m}$ such that

$$\mathrm{d}(U(z)\Omega)=0.$$

Corollary

Let (1) be a single-input system and suppose $\mathcal{H}_{\infty}=\{0\}$. Then, the following statements are equivalent:

- ▶ (1) is linearizable by static state feedback;
- ▶ (1) is linearizable by dynamic state feedback;
- $d\omega_1 \wedge \omega_1 = 0$, where ω_1 is such that $\mathcal{H}_n = \operatorname{span}_{\mathcal{K}^*} \{\omega_1\}$.

Dynamic state feedback linearization

Theorem

Suppose $\mathcal{H}_{\infty} = \{0\}$, and let $\Omega := \begin{bmatrix} \omega_1 & \dots & \omega_m \end{bmatrix}^T \in \mathcal{E}^m$ be a system of linearizing one-forms for system (1). Then, there exists a system of linearizing outputs iff there exists a unimodular polynomial matrix $U(z) \in \mathcal{K}^*[z; \sigma_f, \Delta_f]^{m \times m}$ such that

$$\mathrm{d}(U(z)\Omega)=0.$$

Corollary

Let (1) be a single-input system and suppose $\mathcal{H}_{\infty}=\{0\}$. Then, the following statements are equivalent:

- ▶ (1) is linearizable by static state feedback;
- ▶ (1) is linearizable by dynamic state feedback;
- $d\omega_1 \wedge \omega_1 = 0$, where ω_1 is such that $\mathcal{H}_n = \operatorname{span}_{\mathcal{K}^*} \{\omega_1\}$.

Consider the system

$$x_1^{\Delta} = x_2 - u_1$$
 $x_2^{\Delta} = x_4 u_1$
 $x_3^{\Delta} = u_1$
 $x_4^{\Delta} = u_2$. (3)

The sequence of subspaces \mathcal{H}_k , $k \geq 0$ can be calculated as

$$\begin{split} \mathcal{H}_1 &= \operatorname{span}_{\mathcal{K}^*} \big\{ \mathrm{d}x_1, \mathrm{d}x_2, \mathrm{d}x_3, \mathrm{d}x_4 \big\}, \\ \mathcal{H}_2 &= \operatorname{span}_{\mathcal{K}^*} \big\{ x_4^{\rho_f} \mathrm{d}x_1 + \mathrm{d}x_2, \mathrm{d}x_1 + \mathrm{d}x_3 \big\}, \\ \mathcal{H}_3 &= \dots = \mathcal{H}_{\infty} = \{0\}. \end{split}$$

For this example both linearizing one-forms can be chosen from \mathcal{H}_2 , i.e., $\Omega:=\begin{bmatrix}\omega_1 & \omega_2\end{bmatrix}^T$, where $\omega_1=x_4^{\rho_f}\mathrm{d}x_1+\mathrm{d}x_2$ and $\omega_2=\mathrm{d}x_1+\mathrm{d}x_3$. Though $\mathcal{H}_\infty=\{0\}$, the system is not linearizable by static state feedback, since $\mathrm{d}\omega_1\wedge\omega_1\wedge\omega_2=-\mathrm{d}x_1\wedge\mathrm{d}x_2\wedge\mathrm{d}x_3\wedge\mathrm{d}x_4^{\rho_f}\neq 0$.

Dynamic state feedback linearization: Example

However, the system is linearizable by dynamic state feedback. Indeed, take

$$U(z)=egin{bmatrix} rac{1}{\chi_4^{
ho_f}} & -rac{1}{\chi_4^{
ho_f}}z \ 0 & 1 \end{bmatrix}$$

for which the inverse matrix can be found as

$$U^{-1}(z) = \begin{bmatrix} X_4^{\rho_f} & z \\ 0 & 1 \end{bmatrix}$$

Dynamic state feedback linearization: Example

Next, verify that

$$U(z)\Omega = \begin{bmatrix} \mathrm{d}x_1 \\ \mathrm{d}(x_1 + x_3) \end{bmatrix}.$$

Hence, the linearizing outputs are $y_1=x_1$ and $y_2=x_1+x_3$. Next, compute the sequence of subspaces \mathcal{E}_k for $k=0,\ldots,4$ as

$$\begin{split} &\mathcal{E}_0 = \operatorname{span}_{\mathcal{K}^*} \{ \operatorname{d} x \}, \\ &\mathcal{E}_1 = \operatorname{span}_{\mathcal{K}^*} \{ \operatorname{d} x, -\operatorname{d} u_1 \}, \\ &\mathcal{E}_2 = \operatorname{span}_{\mathcal{K}^*} \{ \operatorname{d} x, -\operatorname{d} u_1, -\operatorname{d} u_1^{\Delta} \}, \\ &\mathcal{E}_3 = \operatorname{span}_{\mathcal{K}^*} \{ \operatorname{d} x, -\operatorname{d} u_1, -\operatorname{d} u_1^{\Delta}, -\operatorname{d} u_1^{\langle 2 \rangle}, \lambda_1 \operatorname{d} u_2 \}, \\ &\mathcal{E}_4 = \operatorname{span}_{\mathcal{K}^*} \{ \operatorname{d} x, -\operatorname{d} u_1, -\operatorname{d} u_1^{\Delta}, -\operatorname{d} u_1^{\langle 2 \rangle}, -\operatorname{d} u_1^{\langle 3 \rangle}, \lambda_1 \operatorname{d} u_2, \lambda_2 \operatorname{d} u_2^{\Delta} \}, \end{split}$$

where $\lambda_1,\lambda_2\in\mathcal{K}^*$. Hence, it follows that $p=\{4,5,6,8,10\}$, and therefore, $\varsigma=\{0,1,1,2,2\}$. Thus, we may conclude that the system is invertible, since $p^*=\varsigma_4=2$. From computations of the subspaces \mathcal{E}_k , we know that

$$y_1^{\Delta} = x_2 - u_1$$

 $y_2^{\langle 3 \rangle} = (x_4 + \mu u_2) \left(x_4 u_1 - y_1^{\langle 2 \rangle} \right) + u_2 (x_2 - y_1^{\Delta}).$

Dynamic state feedback linearization: Example

Take $\eta=y_1^\Delta$, $\eta^\Delta=v_1$, and $y_2^{\langle 3\rangle}=v_2$ then the dynamic feedback compensator has the form

$$\eta^{\Delta} = v_1
u_1 = x_2 - \eta
u_2 = \frac{v_2 - x_4(x_4(x_2 - \eta) - v_1)}{\mu(x_4(x_2 - \eta) - v_1) + x_2 - \eta}.$$
(4)

Now, relying on the inversion algorithm we can calculate dimension of the extended state equations according to the formula $s = \sum_{i=1}^{m} (\epsilon_i - \gamma_i)$ as s = (2-1) + (3-3) = 1. The application of (4) to system (3) yields the extended state equations

$$x_{1}^{\Delta} = \eta$$

$$x_{2}^{\Delta} = x_{4}(x_{2} - \eta)$$

$$x_{3}^{\Delta} = x_{2} - \eta$$

$$x_{4}^{\Delta} = \frac{v_{2} - x_{4}(x_{4}(x_{2} - \eta) - v_{1})}{\mu(x_{4}(x_{2} - \eta) - v_{1}) + x_{2} - \eta}$$

$$\zeta^{\Delta} = v_{1}$$
(5)

Then we define the coordinate transformation as

$$\xi_1 := y_1 = x_1$$
 $\xi_2 := y_1^{\Delta} = x_1^{\Delta} = x_2 - u_1$
 $\xi_3 := y_2 = x_1 + x_3$
 $\xi_4 := y_2^{\Delta} = x_2 - u_1 + u_1 = x_2$
 $\xi_5 := y_2^{\langle 2 \rangle} = x_4 u_1$.

In the new coordinates the extended system has the linear form

$$\xi_1^{\Delta} = \xi_2$$
 $\xi_2^{\Delta} = v_1$ $\xi_3^{\Delta} = \xi_4$ $\xi_4^{\Delta} = \xi_5$ $\xi_5^{\Delta} = v_2$.

Thank you very much for your attention! Any questions?