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Time Scale Calculus

Time scale is a model of time

Definition

A time scale T is an arbitrary nonempty closed subset of the set R of real numbers.

T =R continuous time
T=7% discrete time e o o o o o o o e

T=71Z:={rk|ke€Z}, 7>0 discrete time ¢ . . . . . .
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Time Scale Calculus

Basic operators

» The forward jump operator o : T — T is defined by
o(t):=inf{r€T|7>t}.
> The backward jump operator p: T — T is defined by
p(t) :=inf{r €T |7 > t}.
» The graininess function p : T — [0, 00) is defined by

u(t) == o(t) —t.

A time scale T is called homogeneous if ;. = const. J
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Time Scale Calculus

Delta derivative

Definition

Delta derivative of f(t) : T — R, denoted by f(t), can be defined as the extension of
standard time-derivative in the continuous-time case.

time scale fA(t) delta derivative
T=R af(x) time derivative
T=71Z, >0 w difference operator
T
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Time Scale Calculus

System defined on time scales

Consider a multi-input nonlinear dynamical system, defined on homogeneous time scale T
and described by the state equations
A
x= = f(x,u), (1)
where
» x: T — X C R" is an n-dimensional state vector;
» u: T — U CR"™is an m-dimensional input vector;

> f: X x U — X is assumed to be real analytic function.
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Algebraic framework

Summary

> K is the field of meromorphic functions in a finite number of the independent system
variables from the set

C:{xl,...,x,,; u1<k>,...,u,<,,k>,k20}.
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Algebraic framework

Summary

» K is the field of meromorphic functions in a finite number of the independent system
variables from the set

C= {xl,.. s Xn} u1k>,...,u,<nk>,k20}.

» The pair (K, o) is a o¢-differential field.
» K" denotes the inversive closure of K.

» Consider the infinite set of symbols dC* = {d¢;,( € C*} and define by
€ := span,..dC™ the vector space spanned over the field * with

c* C, if u=20
- CU{Z<_£>|€21}, if 0.
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Algebraic framework

Summary

» K is the field of meromorphic functions in a finite number of the independent system
variables from the set

C= {xl,.. s Xn} u1k>,...,u,<nk>,k20}.

» The pair (K, o) is a o¢-differential field.
» K" denotes the inversive closure of K.

» Consider the infinite set of symbols dC* = {d¢;,( € C*} and define by
€ := span,..dC™ the vector space spanned over the field * with

c* C, if u=20
- CU{Z<_£>|€21}, if 0.

> Any element of £ is called differential one-form.
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Algebraic framework

Actual picture

C:{xl,...,x,,; ufk),...,ufnw,kZO}

K — field of meromorphic functions

Of, Pf

& = spany+dC*

& — vector space of one-forms
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Algebraic framework

Skew polynomial ring

K
A left polynomial can be uniquely written in the form m(z) = Zﬂ'ezl, me € K*.
=0

Definition

The skew polynomial ring, induced by o¢-differential overfield K™, is the
non-commutative ring K*[z; or, Af] of left polynomials in z with usual addition and
multiplication satisfying, for any ¢ € K* C K*[z; of, A¢], the commutation rule

2( =z 4 ¢,
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Algebraic framework

Skew polynomial ring

K
A left polynomial can be uniquely written in the form m(z) = Zﬂ'ezl, me € K*.
=0

Definition

The skew polynomial ring, induced by o¢-differential overfield K™, is the
non-commutative ring K*[z; or, Af] of left polynomials in z with usual addition and
multiplication satisfying, for any ¢ € K* C K*[z; of, A¢], the commutation rule

2( =z 4 ¢,

Let K*[z; 07, Ar]9*9 denote the set of g x g polynomial matrices with entries in
K*[z; or, Af].

Definition

A matrix U(z) € K*[z;0¢, Af]7*9 is called unimodular if there exists an inverse matrix
U™ (2) € K* [z 07, A7,
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Algebraic formalism

Sequence of H

A sequence of subspaces Ho D -+ D Hix D Hiry1 = Hir42 = - -+ =t Hoo of £ is defined
by

Ho := span. {dx, du},
Hi = {w € Hior | WP € HH}, k> 1.

The sequence plays a key role in the analysis of various structural properties of nonlinear
systems, including accessibility and feedback linearization.
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Algebraic formalism

Invertibility and structure at infinity

Consider system (1) and suppose that the output function y = h(x), y € Y CR" is
given. Define a chain of subspaces & C & C --- C &, of £ as

Ex = spanc« {dx, dy, dy<1>, e ,dy<k>}
and associated list of dimensions py := dimi~ Ex.

» For k=0,...,n, ¢ := px — pk—1 is the number of zeros at infinity of order less than
or equal to k, with the convention p_; := n.

» The rank p* of the system is the total number of zeros at infinity, i.e.,
P* =Sn = Pn — Pn—1.
» System (1) is said to be invertible if p* = m.

The structure at infinity can be expressed in different manners. For instance, the list
{ng,..., n;*} of the orders of the zeros at infinity is the list of integers k such that
Sk — Sk—1 # 0, each one repeated ¢, — g_1 times.
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Feedback Linearization

» Static state feedback linearization

» Dynamic state feedback linearization
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Feedback Linearization

Brunovsky (controller) canonical form

Definition
The Brunovsky (controller) canonical form of a system (1), defined on time scale, is
introduced as
A A
51 = £2 e grm_1+1 = ffm_1+2
A A
& =& co frm,1+2 =143
A A
€n-1=2¢n e Erm—1 = &mm
A A
€r1 =Ww Erm = Vim
withn+--+rm=nandrp, <---<n<n.
v

Note that v : T — V C R™ is a vector of new inputs.
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Feedback Linearization

Static state feedback linearization

Suppose Hoo = {0}. Then, there exists a list of integers r1, ..., rm and m one-forms
wi,...,wm € H1 whose relative degrees are, respectively, r, ..., rm such that

j

> span,c*{wiA', i=1,...,mj=0,...,r— 1} = span»{dx} = Ha;
j

> Spalj« {wiAf, i=1,...,m,j= 0,...,:}-} = span,. {dx,du} = Ho;,

Al . . . . .
> the one-forms {w,. fi=1,...,mj> 0} are linearly independent; in particular

m
E ri = n.
i=1
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Feedback Linearization

Static state feedback linearization

Theorem
Suppose Hoo = {0}. Then, there exists a list of integers r1, ..., rm and m one-forms
wi,...,wm € H1 whose relative degrees are, respectively, r, ..., rm such that

j

> span,c*{wiA', i=1,...,mj=0,...,r— 1} = span»{dx} = Ha;
j

> Spanc« {wiAf, i=1,...,m,j= 0,...,:}-} = span,. {dx,du} = Ho;,

Al . . . . .
> the one-forms {w,. fi=1,...,mj> 0} are linearly independent; in particular

m
E ri = n.
i=1

v

System (1) is linearizable by regular® static state feedback u = (x,v) iff Hoo = {0} and
Hy, for k =1,..., k", are integrable.

?A compensator is called regular, if it is invertible, i.e., rank xx 5
v

Juri Belikov (10C) Multi-Conference on Systems and Control October 9, 2014 13 /23



Feedback Linearization

» Static state feedback linearization

> Dynamic state feedback linearization
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Feedback Linearization

Dynamic state feedback linearization

System (1) is said to be linearizable by dynamic state feedback if there exist a regular
dynamic compensator of the form

n® = ((x,m,v),
u= 1/1(X7 7, V) (2)

with 7 € R®, and an extended coordinate transformation ¢ = ¢(x,n) such that, in the
new coordinates, the compensated system (1) reads as

€% = A¢ + Bv,

where £ € R""* and the pair (A, B) is in Brunovsky canonical form.

Juri Belikov (10C) Multi-Conference on Systems and Control October 9, 2014



Feedback Linearization

Dynamic state feedback linearization

Define the subspaces of £ as X' := spany..{dx}, Y := span. {dy<k>, k> O} , X, =
span. {dx, du, du®, ... du VY

Definition
A linearizing output is an output function y = h (x, u, u<1>, ey u<”71>) that satisfies the
following properties:

> y=nh (x, u, o' u<”71>) defines an invertible system;

> > =dime- (X NY) = n.
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Feedback Linearization

Dynamic state feedback linearization

Suppose Hoo = {0}, and let Q := [wl ... wm]T € E™ be a system of linearizing
one-forms for system (1). Then, there exists a system of linearizing outputs iff there
exists a unimodular polynomial matrix U(z) € K*[z; o¢, Af]™*"™ such that

d(U(=)Q) = 0.
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Feedback Linearization

Dynamic state feedback linearization

Theorem

Suppose Hoo = {0}, and let Q := [wl ... wm]T € E™ be a system of linearizing
one-forms for system (1). Then, there exists a system of linearizing outputs iff there
exists a unimodular polynomial matrix U(z) € K*[z; o¢, Af]™*"™ such that

d(U(=)Q) = 0.

| N\

Corollary

Let (1) be a single-input system and suppose Hoo = {0}. Then, the following statements
are equivalent:

» (1) is linearizable by static state feedback;
» (1) is linearizable by dynamic state feedback;

» dwi Awy =0, where wy is such that H, = span,.{w:}.
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Feedback Linearization

Dynamic state feedback linearization: Example

Consider the system

A
X1 = Xo — WU
A
Xy = XalU1
A ®3)
X3 = U
A
Xg = Up.

The sequence of subspaces Hk, kK > 0 can be calculated as

Hi = spany. {dxi, dxz, dxs, dxs },
Ho = spanyc. {x} dx1 + dxz,dx1 + dx3},
Hz = =Ho = {0}.

For this example both linearizing one-forms can be chosen from Ha, i.e., Q := [w1 wz]T,
where w1 = x;7dx; + dx2 and w> = dx; + dxs. Though Hoo = {0}, the system is not
linearizable by static state feedback, since dwi A w1 Aws = —dxi A dxo A dxs A dx)’ # 0.
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Feedback Linearization

Dynamic state feedback linearization: Example

However, the system is linearizable by dynamic state feedback. Indeed, take

11
U(z) = | xgf x5
0 1

for which the inverse matrix can be found as
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Feedback Linearization

Dynamic state feedback linearization: Example

Next, verify that

S PR

Hence, the linearizing outputs are y1 = x1 and y» = x1 + x3. Next, compute the sequence
of subspaces & for k =0,...,4 as

&o = span. {dx},

&1 = span. {dx, —du },

&> = spanj. {dx, —duy, —dulA},

&3 = spany. {dx, —duy, —duf, fdulw, Adun},

&4 = spany. {dx, —duy, —duf, fdulw, fdul<3>, Aidup, )\gduzA},

where A1, \» € K*. Hence, it follows that p = {4,5,6,8,10}, and therefore,
¢={0,1,1,2,2}. Thus, we may conclude that the system is invertible, since
p" = s = 2. From computations of the subspaces £k, we know that

A_
yi =x2— W

n = (xa+ pu) (X4U1 - }’1<2>> + (e — yi).
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Feedback Linearization

Dynamic state feedback linearization: Example

Take n = ylA, nA = v, and y2<3> = v» then the dynamic feedback compensator has the

form
A

n =w
s *)
e 2= xa(xa(x2 — ) — v1)

plale —n) —vi)+xe—n

Now, relying on the inversion algorithm we can calculate dimension of the extended state
m

equations according to the formula s = Z(e,— —vi)ass=(2-1)+(3—-3)=1. The

i=1
application of (4) to system (3) yields the extended state equations

A
X ="
x5 = xa(x —1n)
A
S == (%)
A wv—x(xalbe—n)—w)
X4y =
a2 —n) —vi) +x2 —n
A
¢ =w
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Feedback Linearization

Dynamic state feedback linearization: Example

Then we define the coordinate transformation as

SLi=y1=x

L=yl =x=x—u
=y =x1+Xx3
&::yzAzxz—ul—l—ul:xz
&s = y2<2> = xgU1.

In the new coordinates the extended system has the linear form

g =6 & =w & =6

& =& & =
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Thank you very much for your attention!

Any questions?
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