Dynamic Feedback Linearization of Nonlinear Control Systems on Homogenous Time Scale

Juri Belikov
Institute of Cybernetics,
Tallinn University of Technology
jbelikov@cc.ioc.ee

October 9, 2014

Time Scale Calculus

Time scale is a model of time

Definition

A time scale \mathbb{T} is an arbitrary nonempty closed subset of the set \mathbb{R} of real numbers.

$$
\begin{aligned}
& \mathbb{T}=\mathbb{R} \quad \text { continuous time } \\
& \mathbb{T}=\mathbb{Z} \quad \text { discrete time } \\
& \mathbb{T}=\tau \mathbb{Z}:=\{\tau k \mid k \in \mathbb{Z}\}, \tau>0 \quad \text { discrete time } \\
& \mathbb{T}=\mathbb{P}_{a, b}:=\bigcup_{k=0}^{\infty}[k(a+b), k(a+b)+a] \\
& \mathbb{T}=\mathbb{H}:=\left\{0, \left.\sum_{k=1}^{n} \frac{1}{k} \right\rvert\, n \in \mathbb{N}\right\}
\end{aligned}
$$

Time Scale Calculus

Basic operators

- The forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ is defined by

$$
\sigma(t):=\inf \{\tau \in \mathbb{T} \mid \tau>t\}
$$

- The backward jump operator $\rho: \mathbb{T} \rightarrow \mathbb{T}$ is defined by

$$
\rho(t):=\inf \{\tau \in \mathbb{T} \mid \tau>t\}
$$

- The graininess function $\mu: \mathbb{T} \rightarrow[0, \infty)$ is defined by

$$
\mu(t):=\sigma(t)-t
$$

A time scale \mathbb{T} is called homogeneous if $\mu \equiv$ const.

Time Scale Calculus

Definition

Delta derivative of $f(t): \mathbb{T} \rightarrow \mathbb{R}$, denoted by $f^{\Delta}(t)$, can be defined as the extension of standard time-derivative in the continuous-time case.

time scale	$\mathbf{f}^{\Delta}(\mathbf{t})$	delta derivative
$\mathbb{T}=\mathbb{R}$	$\frac{\mathrm{d} f(t)}{\mathrm{d} t}$	time derivative
$\mathbb{T}=\tau \mathbb{Z}, \tau>0$	$\frac{f(t+\tau)-f(t)}{\tau}$	difference operator

Consider a multi-input nonlinear dynamical system, defined on homogeneous time scale \mathbb{T} and described by the state equations

$$
\begin{equation*}
x^{\Delta}=f(x, u) \tag{1}
\end{equation*}
$$

where

- $x: \mathbb{T} \rightarrow \mathbb{X} \subset \mathbb{R}^{n}$ is an n-dimensional state vector;
- $u: \mathbb{T} \rightarrow \mathbb{U} \subset \mathbb{R}^{m}$ is an m-dimensional input vector;
- $f: \mathbb{X} \times \mathbb{U} \rightarrow \mathbb{X}$ is assumed to be real analytic function.

Algebraic framework

- \mathcal{K} is the field of meromorphic functions in a finite number of the independent system variables from the set

$$
\mathcal{C}=\left\{x_{1}, \ldots, x_{n} ; u_{1}^{\langle k\rangle}, \ldots, u_{m}^{\langle k\rangle}, k \geq 0\right\}
$$

The pair $\left(\mathcal{K}, \sigma_{f}\right)$ is a σ_{f}-differential field.

K* denotes the inversive closure of K
Consider the infinite set of symbols $\mathrm{d} \mathcal{C}^{*}=\left\{\mathrm{d} \zeta_{i}, \zeta \in \mathcal{C}^{*}\right\}$ and define by $\mathcal{E}:=\operatorname{span}_{\mathcal{K}^{*}} \mathrm{~d} \mathcal{C}^{*}$ the vector space spanned over the field \mathcal{K}^{*} with

Any element of \mathcal{E} is called differential one-form

Algebraic framework

Summary

- \mathcal{K} is the field of meromorphic functions in a finite number of the independent system variables from the set

$$
\mathcal{C}=\left\{x_{1}, \ldots, x_{n} ; u_{1}^{\langle k\rangle}, \ldots, u_{m}^{\langle k\rangle}, k \geq 0\right\}
$$

- The pair $\left(\mathcal{K}, \sigma_{f}\right)$ is a σ_{f}-differential field.
\mathcal{K}^{*} denotes the inversive closure of \mathcal{K}

Consider the infinite set of symbols $\mathrm{d} \mathcal{C}^{*}=\left\{\mathrm{d} \zeta_{i}, \zeta \in \mathcal{C}^{*}\right\}$ and define by $\mathcal{E}:=\operatorname{span}_{\mathcal{K}_{*}} \mathrm{dC} \mathcal{C}^{*}$ the vector space spanned over the field \mathcal{K}^{*} with

Any element of \mathcal{E} is called differential one-form

Algebraic framework

Summary

- \mathcal{K} is the field of meromorphic functions in a finite number of the independent system variables from the set

$$
\mathcal{C}=\left\{x_{1}, \ldots, x_{n} ; u_{1}^{\langle k\rangle}, \ldots, u_{m}^{\langle k\rangle}, k \geq 0\right\}
$$

- The pair $\left(\mathcal{K}, \sigma_{f}\right)$ is a σ_{f}-differential field.
- \mathcal{K}^{*} denotes the inversive closure of \mathcal{K}.

Consider the infinite set of symbols $\mathrm{d} \mathcal{C}^{*}=\left\{\mathrm{d} \zeta_{i}, \zeta \in \mathcal{C}^{*}\right\}$ and define by $\mathcal{E}:=\operatorname{span}_{\mathcal{K}^{*}} \mathrm{dC}^{*}$ the vector space spanned over the field \mathcal{K}^{*} with

Any element of \mathcal{E} is called differential one-form

Algebraic framework

Summary

- \mathcal{K} is the field of meromorphic functions in a finite number of the independent system variables from the set

$$
\mathcal{C}=\left\{x_{1}, \ldots, x_{n} ; u_{1}^{\langle k\rangle}, \ldots, u_{m}^{\langle k\rangle}, k \geq 0\right\}
$$

- The pair $\left(\mathcal{K}, \sigma_{f}\right)$ is a σ_{f}-differential field.
- \mathcal{K}^{*} denotes the inversive closure of \mathcal{K}.
- Consider the infinite set of symbols $\mathrm{d} \mathcal{C}^{*}=\left\{\mathrm{d} \zeta_{i}, \zeta \in \mathcal{C}^{*}\right\}$ and define by $\mathcal{E}:=\operatorname{span}_{\mathcal{K}^{*}} \mathrm{~d} \mathcal{C}^{*}$ the vector space spanned over the field \mathcal{K}^{*} with

$$
\mathcal{C}^{*}= \begin{cases}\mathcal{C}, & \text { if } \mu=0 \\ \mathcal{C} \cup\left\{z^{\langle-\ell\rangle} \mid \ell \geq 1\right\}, & \text { if } \mu \neq 0\end{cases}
$$

Any element of \mathcal{E} is called differential one-form

Algebraic framework

Summary

- \mathcal{K} is the field of meromorphic functions in a finite number of the independent system variables from the set

$$
\mathcal{C}=\left\{x_{1}, \ldots, x_{n} ; u_{1}^{\langle k\rangle}, \ldots, u_{m}^{\langle k\rangle}, k \geq 0\right\} .
$$

- The pair $\left(\mathcal{K}, \sigma_{f}\right)$ is a σ_{f}-differential field.
- \mathcal{K}^{*} denotes the inversive closure of \mathcal{K}.
- Consider the infinite set of symbols $\mathrm{d} \mathcal{C}^{*}=\left\{\mathrm{d} \zeta_{i}, \zeta \in \mathcal{C}^{*}\right\}$ and define by $\mathcal{E}:=\operatorname{span}_{\mathcal{K}^{*}} \mathrm{~d} \mathcal{C}^{*}$ the vector space spanned over the field \mathcal{K}^{*} with

$$
\mathcal{C}^{*}= \begin{cases}\mathcal{C}, & \text { if } \mu=0 \\ \mathcal{C} \cup\left\{z^{\langle-\ell\rangle} \mid \ell \geq 1\right\}, & \text { if } \mu \neq 0\end{cases}
$$

- Any element of \mathcal{E} is called differential one-form.

Algebraic framework

$$
\mathcal{C}=\left\{x_{1}, \ldots, x_{n} ; u_{1}^{\langle k\rangle}, \ldots, u_{m}^{\langle k\rangle}, k \geq 0\right\}
$$

\mathcal{K} - field of meromorphic functions
\mathcal{E} - vector space of one-forms

Algebraic framework

A left polynomial can be uniquely written in the form $\pi(z)=\sum_{\ell=0}^{k} \pi_{\ell} z^{\ell}, \pi_{\ell} \in \mathcal{K}^{*}$.

Definition

The skew polynomial ring, induced by σ_{f}-differential overfield \mathcal{K}^{*}, is the non-commutative ring $\mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]$ of left polynomials in z with usual addition and multiplication satisfying, for any $\zeta \in \mathcal{K}^{*} \subset \mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]$, the commutation rule

$$
z \zeta:=\zeta^{\sigma_{f}} z+\zeta^{\Delta_{f}} .
$$

Algebraic framework

A left polynomial can be uniquely written in the form $\pi(z)=\sum_{\ell=0}^{k} \pi_{\ell} z^{\ell}, \pi_{\ell} \in \mathcal{K}^{*}$.

Definition

The skew polynomial ring, induced by σ_{f}-differential overfield \mathcal{K}^{*}, is the non-commutative ring $\mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]$ of left polynomials in z with usual addition and multiplication satisfying, for any $\zeta \in \mathcal{K}^{*} \subset \mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]$, the commutation rule

$$
z \zeta:=\zeta^{\sigma_{f}} z+\zeta^{\Delta_{f}}
$$

Let $\mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]^{q \times q}$ denote the set of $q \times q$ polynomial matrices with entries in $\mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]$.

Definition

A matrix $U(z) \in \mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]^{q \times q}$ is called unimodular if there exists an inverse matrix $U^{-1}(z) \in \mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]^{q \times q}$.

Algebraic formalism

A sequence of subspaces $\mathcal{H}_{0} \supset \cdots \supset \mathcal{H}_{k^{*}} \supset \mathcal{H}_{k^{*}+1}=\mathcal{H}_{k^{*}+2}=\cdots=: \mathcal{H}_{\infty}$ of \mathcal{E} is defined by

$$
\begin{aligned}
& \mathcal{H}_{0}:=\operatorname{span}_{\mathcal{K}^{*}}\{\mathrm{~d} x, \mathrm{~d} u\} \\
& \mathcal{H}_{k}:=\left\{\omega \in \mathcal{H}_{k-1} \mid \omega^{\Delta_{f}} \in \mathcal{H}_{k-1}\right\}, \quad k \geq 1
\end{aligned}
$$

The sequence plays a key role in the analysis of various structural properties of nonlinear systems, including accessibility and feedback linearization.

Algebraic formalism

Consider system (1) and suppose that the output function $y=h(x), y \in \mathbb{Y} \subset \mathbb{R}^{m}$ is given. Define a chain of subspaces $\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset \cdots \subset \mathcal{E}_{n}$ of \mathcal{E} as

$$
\mathcal{E}_{k}=\operatorname{span}_{\mathcal{K}^{*}}\left\{\mathrm{~d} x, \mathrm{~d} y, \mathrm{~d} y^{\langle 1\rangle}, \ldots, \mathrm{d} y^{\langle k\rangle}\right\}
$$

and associated list of dimensions $p_{k}:=\operatorname{dim}_{\mathcal{K}} * \mathcal{E}_{k}$.

- For $k=0, \ldots, n, \varsigma_{k}:=p_{k}-p_{k-1}$ is the number of zeros at infinity of order less than or equal to k, with the convention $p_{-1}:=n$.
- The rank p^{*} of the system is the total number of zeros at infinity, i.e., $p^{*}=\varsigma_{n}=p_{n}-p_{n-1}$.
- System (1) is said to be invertible if $p^{*}=m$.

Remark

The structure at infinity can be expressed in different manners. For instance, the list $\left\{n_{1}^{\prime}, \ldots, n_{p^{*}}^{\prime}\right\}$ of the orders of the zeros at infinity is the list of integers k such that $\varsigma_{k}-\varsigma_{k-1} \neq 0$, each one repeated $\varsigma_{k}-\varsigma_{k-1}$ times.

Feedback Linearization

- Static state feedback linearization
- Dynamic state feedback linearization

Feedback Linearization

Definition

The Brunovsky (controller) canonical form of a system (1), defined on time scale, is introduced as

$$
\begin{array}{lll}
\xi_{1}^{\Delta}=\xi_{2} & \ldots & \xi_{r_{m-1}+1}^{\Delta}=\xi_{r_{m-1}+2} \\
\xi_{2}^{\Delta}=\xi_{3} & \ldots & \xi_{r_{m-1}+2}^{\Delta}=\xi_{r_{m-1}+3}
\end{array}
$$

$$
\xi_{r_{1}-1}^{\Delta}=\xi_{r_{1}}
$$

. . .

$$
\xi_{r_{m}-1}^{\Delta}=\xi_{r_{m}}
$$

$$
\xi_{r_{1}}^{\Delta}=v_{1}
$$

$$
\xi_{r_{m}}^{\Delta}=v_{m}
$$

with $r_{1}+\cdots+r_{m}=n$ and $r_{m} \leq \cdots \leq r_{2} \leq r_{1}$.
Note that $v: \mathbb{T} \rightarrow \mathbb{V} \subset \mathbb{R}^{m}$ is a vector of new inputs.

Feedback Linearization

Theorem

Suppose $\mathcal{H}_{\infty}=\{0\}$. Then, there exists a list of integers r_{1}, \ldots, r_{m} and m one-forms $\omega_{1}, \ldots, \omega_{m} \in \mathcal{H}_{1}$ whose relative degrees are, respectively, r_{1}, \ldots, r_{m} such that
$-\operatorname{span}_{\mathcal{K}^{*}}\left\{\omega_{i}^{\Delta^{j}}, i=1, \ldots, m, j=0, \ldots, r_{j}-1\right\}=\operatorname{span}_{\mathcal{K}^{*}}\{\mathrm{~d} x\}=\mathcal{H}_{1} ;$
$\triangleright \operatorname{span}_{\mathcal{K}^{*}}\left\{\omega_{i}^{\Delta_{f}^{j}}, i=1, \ldots, m, j=0, \ldots, r_{j}\right\}=\operatorname{span}_{\mathcal{K}^{*}}\{\mathrm{~d} x, \mathrm{~d} u\}=\mathcal{H}_{0}$;

- the one-forms $\left\{\omega_{i}^{\Delta_{f}^{j}}, i=1, \ldots, m, j \geq 0\right\}$ are linearly independent; in particular $\sum_{i=1}^{m} r_{i}=n$.

Theorem

System (1) is linearizable by regular ${ }^{3}$ static state feedback $u=\psi(x, v)$ iff $\mathcal{H}_{\infty}=\{0\}$ and \mathcal{H}_{k}, for $k=1, \ldots, k^{*}$, are integrable.
${ }^{2}$ A compensator is called regular, if it is invertible, i.e., rank $\mathcal{K}^{*} \frac{\partial \psi}{\partial v}=m$.

Feedback Linearization

Theorem

Suppose $\mathcal{H}_{\infty}=\{0\}$. Then, there exists a list of integers r_{1}, \ldots, r_{m} and m one-forms $\omega_{1}, \ldots, \omega_{m} \in \mathcal{H}_{1}$ whose relative degrees are, respectively, r_{1}, \ldots, r_{m} such that
$\triangleright \operatorname{span}_{\mathcal{K}^{*}}\left\{\omega_{i}^{\Delta^{j}}, i=1, \ldots, m, j=0, \ldots, r_{j}-1\right\}=\operatorname{span}_{\mathcal{K}^{*}}\{\mathrm{~d} x\}=\mathcal{H}_{1} ;$
$-\operatorname{span}_{\mathcal{K}^{*}}\left\{\omega_{i}^{\Delta^{j}}, i=1, \ldots, m, j=0, \ldots, r_{j}\right\}=\operatorname{span}_{\mathcal{K}^{*}}\{\mathrm{~d} x, \mathrm{~d} u\}=\mathcal{H}_{0}$;

- the one-forms $\left\{\omega_{i}^{\Delta_{f}^{j}}, i=1, \ldots, m, j \geq 0\right\}$ are linearly independent; in particular $\sum_{i=1}^{m} r_{i}=n$.

Theorem

System (1) is linearizable by regular ${ }^{3}$ static state feedback $u=\psi(x, v)$ iff $\mathcal{H}_{\infty}=\{0\}$ and \mathcal{H}_{k}, for $k=1, \ldots, k^{*}$, are integrable.
${ }^{a} \mathrm{~A}$ compensator is called regular, if it is invertible, i.e., $\operatorname{rank}_{\mathcal{K}^{*}} \frac{\partial \psi}{\partial v}=m$.

Feedback Linearization

- Static state feedback linearization
- Dynamic state feedback linearization

System (1) is said to be linearizable by dynamic state feedback if there exist a regular dynamic compensator of the form

$$
\begin{align*}
\eta^{\Delta} & =\zeta(x, \eta, v) \tag{2}\\
u & =\psi(x, \eta, v)
\end{align*}
$$

with $\eta \in \mathbb{R}^{s}$, and an extended coordinate transformation $\xi=\phi(x, \eta)$ such that, in the new coordinates, the compensated system (1) reads as

$$
\xi^{\Delta}=A \xi+B v
$$

where $\xi \in \mathbb{R}^{n+s}$ and the pair (A, B) is in Brunovsky canonical form.

Feedback Linearization

Define the subspaces of \mathcal{E} as $\mathcal{X}:=\operatorname{span}_{\mathcal{K}^{*}}\{\mathrm{~d} x\}, \mathcal{Y}:=\operatorname{span}_{\mathcal{K}^{*}}\left\{\mathrm{~d} y^{\langle k\rangle}, k \geq 0\right\}, \mathcal{X}_{\nu}:=$ $\operatorname{span}_{\mathcal{K}^{*}}\left\{\mathrm{~d} x, \mathrm{~d} u, \mathrm{~d} u^{\langle 1\rangle}, \ldots, \mathrm{d} u^{\langle\nu-1\rangle}\right\}$.

Definition

A linearizing output is an output function $y=h\left(x, u, u^{\langle 1\rangle}, \ldots, u^{\langle\nu-1\rangle}\right)$ that satisfies the following properties:
$\downarrow y=h\left(x, u, u^{\langle 1\rangle}, \ldots, u^{\langle\nu-1\rangle}\right)$ defines an invertible system;

- $\sum_{i} n_{i}^{\prime}=\operatorname{dim}_{\mathcal{K}^{*}}(\mathcal{X} \cap \mathcal{Y})=n$.

Feedback Linearization

Dynamic state feedback linearization

Theorem

Suppose $\mathcal{H}_{\infty}=\{0\}$, and let $\Omega:=\left[\begin{array}{lll}\omega_{1} & \ldots & \omega_{m}\end{array}\right]^{\mathrm{T}} \in \mathcal{E}^{m}$ be a system of linearizing one-forms for system (1). Then, there exists a system of linearizing outputs iff there exists a unimodular polynomial matrix $U(z) \in \mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]^{m \times m}$ such that

$$
\mathrm{d}(U(z) \Omega)=0 .
$$

```
Corollary
Let (1) be a single-input system and suppose H
are equivalent.
    (1) is linearizable by static state feedback;
    (1) is linearizable by dynamic state feedhack,
    d}\mp@subsup{\omega}{1}{}\wedge\mp@subsup{\omega}{1}{}=0, where \mp@subsup{\omega}{1}{}\mathrm{ is such that }\mp@subsup{\mathcal{H}}{n}{}=\mp@subsup{\operatorname{span}}{\mp@subsup{\mathcal{K}}{*}{*}}{{}\mp@subsup{\omega}{1}{}
```


Feedback Linearization

Dynamic state feedback linearization

Theorem

Suppose $\mathcal{H}_{\infty}=\{0\}$, and let $\Omega:=\left[\begin{array}{lll}\omega_{1} & \ldots & \omega_{m}\end{array}\right]^{\mathrm{T}} \in \mathcal{E}^{m}$ be a system of linearizing one-forms for system (1). Then, there exists a system of linearizing outputs iff there exists a unimodular polynomial matrix $U(z) \in \mathcal{K}^{*}\left[z ; \sigma_{f}, \Delta_{f}\right]^{m \times m}$ such that

$$
\mathrm{d}(U(z) \Omega)=0 .
$$

Corollary

Let (1) be a single-input system and suppose $\mathcal{H}_{\infty}=\{0\}$. Then, the following statements are equivalent:

- (1) is linearizable by static state feedback;
- (1) is linearizable by dynamic state feedback;
- $\mathrm{d} \omega_{1} \wedge \omega_{1}=0$, where ω_{1} is such that $\mathcal{H}_{n}=\operatorname{span}_{\mathcal{K}^{*}}\left\{\omega_{1}\right\}$.

Feedback Linearization

Consider the system

$$
\begin{align*}
& x_{1}^{\Delta}=x_{2}-u_{1} \\
& x_{2}^{\Delta}=x_{4} u_{1} \\
& x_{3}^{\Delta}=u_{1} \tag{3}\\
& x_{4}^{\Delta}=u_{2} .
\end{align*}
$$

The sequence of subspaces $\mathcal{H}_{k}, k \geq 0$ can be calculated as

$$
\begin{aligned}
& \mathcal{H}_{1}=\operatorname{span}_{\mathcal{K}^{*}}\left\{\mathrm{~d} x_{1}, \mathrm{~d} x_{2}, \mathrm{~d} x_{3}, \mathrm{~d} x_{4}\right\} \\
& \mathcal{H}_{2}=\operatorname{span}_{\mathcal{K}^{*}}\left\{x_{4}^{\rho_{f}} \mathrm{~d} x_{1}+\mathrm{d} x_{2}, \mathrm{~d} x_{1}+\mathrm{d} x_{3}\right\} \\
& \mathcal{H}_{3}=\cdots=\mathcal{H}_{\infty}=\{0\}
\end{aligned}
$$

For this example both linearizing one-forms can be chosen from \mathcal{H}_{2}, i.e., $\Omega:=\left[\begin{array}{ll}\omega_{1} & \omega_{2}\end{array}\right]^{\mathrm{T}}$, where $\omega_{1}=x_{4}^{\rho f} \mathrm{~d} x_{1}+\mathrm{d} x_{2}$ and $\omega_{2}=\mathrm{d} x_{1}+\mathrm{d} x_{3}$. Though $\mathcal{H}_{\infty}=\{0\}$, the system is not linearizable by static state feedback, since $d \omega_{1} \wedge \omega_{1} \wedge \omega_{2}=-\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3} \wedge \mathrm{~d} x_{4}^{\rho_{f}} \neq 0$.

Feedback Linearization

However, the system is linearizable by dynamic state feedback. Indeed, take

$$
U(z)=\left[\begin{array}{cc}
\frac{1}{x_{4}^{\rho_{f}}} & -\frac{1}{x_{4}^{\rho_{f}}} z \\
0 & 1
\end{array}\right]
$$

for which the inverse matrix can be found as

$$
U^{-1}(z)=\left[\begin{array}{cc}
x_{4}^{\rho_{f}} & z \\
0 & 1
\end{array}\right]
$$

Feedback Linearization

Next, verify that

$$
U(z) \Omega=\left[\begin{array}{c}
\mathrm{d} x_{1} \\
\mathrm{~d}\left(x_{1}+x_{3}\right)
\end{array}\right]
$$

Hence, the linearizing outputs are $y_{1}=x_{1}$ and $y_{2}=x_{1}+x_{3}$. Next, compute the sequence of subspaces \mathcal{E}_{k} for $k=0, \ldots, 4$ as

$$
\begin{aligned}
& \mathcal{E}_{0}=\operatorname{span}_{\mathcal{K}^{*}}\{\mathrm{~d} x\} \\
& \mathcal{E}_{1}=\operatorname{span}_{\mathcal{K}^{*}}\left\{\mathrm{~d} x,-\mathrm{d} u_{1}\right\} \\
& \mathcal{E}_{2}=\operatorname{span}_{\mathcal{K}^{*}}\left\{\mathrm{~d} x,-\mathrm{d} u_{1},-\mathrm{d} u_{1}^{\Delta}\right\}, \\
& \mathcal{E}_{3}=\operatorname{span}_{\mathcal{K}^{*}}\left\{\mathrm{~d} x,-\mathrm{d} u_{1},-\mathrm{d} u_{1}^{\Delta},-\mathrm{d} u_{1}^{\langle 2\rangle}, \lambda_{1} \mathrm{~d} u_{2}\right\} \\
& \mathcal{E}_{4}=\operatorname{span}_{\mathcal{K}^{*}}\left\{\mathrm{~d} x,-\mathrm{d} u_{1},-\mathrm{d} u_{1}^{\Delta},-\mathrm{d} u_{1}^{\langle 2\rangle},-\mathrm{d} u_{1}^{\langle 3\rangle}, \lambda_{1} \mathrm{~d} u_{2}, \lambda_{2} \mathrm{~d} u_{2}^{\Delta}\right\},
\end{aligned}
$$

where $\lambda_{1}, \lambda_{2} \in \mathcal{K}^{*}$. Hence, it follows that $p=\{4,5,6,8,10\}$, and therefore, $\varsigma=\{0,1,1,2,2\}$. Thus, we may conclude that the system is invertible, since $p^{*}=\varsigma_{4}=2$. From computations of the subspaces \mathcal{E}_{k}, we know that

$$
\begin{aligned}
y_{1}^{\Delta} & =x_{2}-u_{1} \\
y_{2}^{\langle 3\rangle} & =\left(x_{4}+\mu u_{2}\right)\left(x_{4} u_{1}-y_{1}^{\langle 2\rangle}\right)+u_{2}\left(x_{2}-y_{1}^{\Delta}\right)
\end{aligned}
$$

Feedback Linearization

Take $\eta=y_{1}^{\Delta}, \eta^{\Delta}=v_{1}$, and $y_{2}^{\langle 3\rangle}=v_{2}$ then the dynamic feedback compensator has the form

$$
\begin{align*}
\eta^{\Delta} & =v_{1} \\
u_{1} & =x_{2}-\eta \tag{4}\\
u_{2} & =\frac{v_{2}-x_{4}\left(x_{4}\left(x_{2}-\eta\right)-v_{1}\right)}{\mu\left(x_{4}\left(x_{2}-\eta\right)-v_{1}\right)+x_{2}-\eta}
\end{align*}
$$

Now, relying on the inversion algorithm we can calculate dimension of the extended state equations according to the formula $s=\sum_{i=1}^{m}\left(\epsilon_{i}-\gamma_{i}\right)$ as $s=(2-1)+(3-3)=1$. The application of (4) to system (3) yields the extended state equations

$$
\begin{align*}
& x_{1}^{\Delta}=\eta \\
& x_{2}^{\Delta}=x_{4}\left(x_{2}-\eta\right) \\
& x_{3}^{\Delta}=x_{2}-\eta \tag{5}\\
& x_{4}^{\Delta}=\frac{v_{2}-x_{4}\left(x_{4}\left(x_{2}-\eta\right)-v_{1}\right)}{\mu\left(x_{4}\left(x_{2}-\eta\right)-v_{1}\right)+x_{2}-\eta} \\
& \zeta^{\Delta}=v_{1}
\end{align*}
$$

Feedback Linearization

Then we define the coordinate transformation as

$$
\begin{aligned}
& \xi_{1}:=y_{1}=x_{1} \\
& \xi_{2}:=y_{1}^{\Delta}=x_{1}^{\Delta}=x_{2}-u_{1} \\
& \xi_{3}:=y_{2}=x_{1}+x_{3} \\
& \xi_{4}:=y_{2}^{\Delta}=x_{2}-u_{1}+u_{1}=x_{2} \\
& \xi_{5}:=y_{2}^{\langle 2\rangle}=x_{4} u_{1} .
\end{aligned}
$$

In the new coordinates the extended system has the linear form

$$
\begin{array}{lll}
\xi_{1}^{\Delta}=\xi_{2} & \xi_{2}^{\Delta}=v_{1} & \xi_{3}^{\Delta}=\xi_{4} \\
\xi_{4}^{\Delta}=\xi_{5} & \xi_{5}^{\Delta}=v_{2} &
\end{array}
$$

Thank you very much for your attention!

Any questions?

