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Motivation, contribution, and outline
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• Our long-term goal is to design and build a fractional-order PID-type
controller capable of efficient and reliable self-tuning and utilizing an
appropriate gain and order scheduling (GOS) scheme for robust industrial
process control.

• In this contribution, we propose a two-point GOS and apply it to a model
of an industrial plant: the Multi-Tank system provided by INTECO. The
following items are considered in this talk:

◦ Overview of FOC tools used in the contribution;

◦ Description of the proposed GOS method;

◦ Nonlinear model of the Multi-Tank system and appropriate Extended
Kalman filter;

◦ Experimental results: Application of the method, controller tuning,
control system performance.

• Conclusions and further research perspectives.



Fractional Calculus tools used in this work
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In the following, a summary of the most FOC tools used in this work is
provided:

• Grünwald-Letnikov definition of the fractional operator:

aD
α
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k
∑
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(−1)j
(
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j

)

f(t− jh), (1)

where a = 0 , t = kh, k is the number of steps and h is step size.

• For real-time applications we consider Oustaloup’s approximation method,
which allows to obtain a band-limited approximation of a fractional-order
differentiator or integrator in the form sα ≈ H(s), where α ∈ (−1, 1) ⊂ R.

• The following FO process model is used in this work:

G(s) =
K

Tsα + 1
. (2)



Stability: Matignon’s stability theorem
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Theorem 1. (Matignon’s stability theorem) The fractional
transfer function G(s) = Z(s)/P (s) is stable if and only if the
following condition is satisfied in σ-plane:

∣

∣arg(σ)
∣

∣ > q
π

2
, ∀σ ∈ C, P (σ) = 0, (3)

where σ := sq. When σ = 0 is a single root of P (s), the system
cannot be stable. For q = 1, this is the classical theorem of pole
location in the complex plane: no pole is in the closed right plane
of the first Riemann sheet.

Algorithm summary: Find the commensurate order q of P (s), find
a1, a2, . . . an and solve for σ the equation

∑n
k=0 akσ

k = 0. If all
obtained roots satisfy the condition (1), the system is stable.



FOPID controller: Tuning for robust control
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We consider the parallel form of the fractional-order PID (FOPID) controller:

C(s) = Kp +Kis
−λ +Kds

µ. (4)

Tuning is done by means of minimizing a performance index:

ITAE =

∫ τ

0

t
∣

∣e(t)
∣

∣ dt. (5)

To ensure robustness of the control system we employ the following specifications:

• Gain margin Gm and phase margin ϕm specifications;

• Complementary sensitivity function T (jω) constraint, providing A dB of noise
attenuation for frequencies ω > ωt rad/s;

• Sensitivity function S(jω) constraint for output disturbance rejection, providing a
sensitivity function of B dB for frequencies ω < ωs rad/s;

• Robustness to plant gain variations: a flat phase of the system is desired within a
region of the system critical frequency ωcg.



Proposed gain and order scheduling

method: Linear approximations
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Suppose that a nonlinear system is modeled by

ẋ = f(x, u) (6)

y = h(x).

Suppose in addition, that a linear fractional-order approximations may be
obtained for a set of working points

{

(uk; yk), k = 1, 2, . . . , n
}

, across
the system operating range. Denote the set of such apporimations by

Ψ = {G1, G2, . . . , Gn} (7)

Then, for each Gi ∈ Ψ design a FOPID controller, that would locally
satisfy a set of performance specifications thereby forming another set,
denoted by

Ω = {C1, C2, . . . , Cn} . (8)



Proposed gain and order scheduling

method: Composite control law
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Consider the composite control law

Υ(x, s) =
n
∑

k=1

βk(x)Ck(s), (9)

where βk(x) is a weighting function depending on the scheduled state
x(t) and Ck ∈ Ω. The choice of n in (9) depends on the operating range
of the system in (6). Here, we consider the case n = 2. Then,

Υ(x, s) = β1(x)C1(s) + β2(x)C2(s) (10)

and since we are dealing with level control, we may choose the state x(t)
to be the level, xmax the maximum level, and define

β1(x) :=

(

1− γ(x)
)

2
, β2(x) :=

γ(x)

2
, γ(x) :=

x(t)

xmax

. (11)



Proposed gain and order scheduling

method: Heuristic stability test
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Since each entry in (8) is designed for a particular linear approximation,
the composite control law in (9) must be verified across the whole range
of linearized models. That is, stability must be ensured for all entries in
(7). In this work, we consider a heuristic method. Since we employ the
negative unity feedback loop, we may compose a set

Λ = {Γ1,Γ2, . . . ,Γνn} (12)

where

Γk =
Zk(s)

Pk(s)
=

Υj(x, s)Gk(s)

1 + Υj(x, s)Gk(s)
(13)

and j = 1, 2, . . . , ν is the number of state values considered for the test
and Υj is a particular control law. For each entry in (12) take the
characteristic polynomial Pk(s), find the commensurate order q > qmin

and use Matignon’s theorem.



Nonlinear model of the two-tank system
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Inflow from pump

Tank 1 with constant

cross-section

Manual and

automatic valves

of both tanks

Tank 2 with variable

cross-section

This system can be described by the following
differential equations:

ẋ1 =
1

η1(x1)

(

up(v)− C1x
α1

1
− ζ1(v1)x

α
v1

1

)

,

ẋ2 =
1

η2(x2)

(

q + r − C2x
α2

2
− ζ2(v2)x

α
v2

2

)

,

where x1 and x2 are levels in the upper tank and
middle tank, respectively, η1(x1) = A = aw and
η2(x2) = cw+ x2bw/x2max are cross-sectional areas of
the upper and middle tank, respectively, up(v) is the
pump capacity, such that depends on the normalized
input v(t) ∈ [0, 1]; ζ1(v1) and ζ2(v2) are variable flow
coefficients of the automatic valves controlled by
normalized inputs v1(t), v2(t) ∈ [0, 1], q = C1x

α1

1
and

r = ζ1(v1)x
α
v1

1
.



Nonlinear model of the two-tank system:

Identification

Aleksei Tepljakov 10 / 27

0 10 20 30 40 50 60
−0.02

0

0.02

0.04

0.06

0.08

0.1

T
a
n
k
 1

: 
x 1

 [
m

]

 

 

Identified model

Original response

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

T
a
n
k
 2

: 
x 2

 [
m

]

Time [s]

 

 

Identified model

Original response



Extended Kalman Filter: Removing noise

from level measurements
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Statement of the control problem
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• The task is to design a controller for the upper tank such that would
keep the level of fluid within reasonable bounds at the desired set
point in the presense of disturbances caused by the controlled output
valve.

• It is required to design a controller for the middle tank, such that
would keep the level of fluid at the desired set point using controlled
valves of the upper tank and also its own valve.

• The tanks are, in fact, coupled, so only a limited range of fluid level
values is achievable in the middle tank and it is related to the level in
the upper tank.

• The outflow of liquid from the upper tank through the automatic
valve forms part of the control for the middle tank and is considered
a disturbance from the perspective of level control in the upper tank.



Formulation of the control law for the

middle tank
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We define a unified control input for controlling the level in the second
tank vc(t) ∈ [−1, 1] such, that the control inputs of the automatic valves
are given by the following set of rules

v1 =

{

0, if vc 6 0,

0.3vc + vd, if vc > 0,
(14)

and

v2 =

{

0, if vc > 0,

−0.3vc + vd, if vc < 0.
(15)

The value vd = 0.7 corresponds to the deadzone of the control in both
cases, that is, the fluid does not flow through the automatic valves when
v1 6 vd or v2 6 vd. The constructed control law allows to regulate the
fluid level in the middle tank.



Experimental results: The real-life

Multi-Tank system
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Experimental results: Linear approximations
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First, linear approximations are obtained from the nonlinear model by
means of time-domain identification at system working points
(0.7029, 0.1) and (0.7879, 0.2). The following models are found:

G1(s) =
0.14464

18.728s0.91746 + 1

and

G2(s) =
0.25881

27.859s0.9115 + 1
.

Next, controllers are designed for level control in the upper tank using
the FOPID optimization tool of FOMCON toolbox. For this a nonlinear
model of the system is used for simulations in the time domain, the set
value corresponds to the particular operating point. Linear
approximations, corresponding to the working points, are used to
constrain the optimization by means of frequency-domain specifications.



Experimental results: FOMCON FOPID

Optimization tool

Aleksei Tepljakov 16 / 27



Experimental results: Tuning the FOPID

controller for the upper tank
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Recall, that we have a two-point GOS scheme, therefore we have
two controllers. The specifications are as follows:

• In case of the first controller, a phase margin is set to
ϕm > 60◦, sensitivity and complementary sensitivity function
constraints are set such that ωt = 0.02 and ωs = 0.1 with
A = B = −20 dB. Robustness to gain variations specification is
also used with the critical frequency ωc = 0.1.

• For the second controller, the phase margin specification is
changed to ϕm = 85◦ and the bandwidth limitation specified by
ωc is removed.

Due to the flexibility of the tuning tool, it is possible to retune the
controllers by considering the composite control law during the
controller optimization process.



Experimental results: Composite control law

and stability test
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As a result, two FOPID controllers are obtained:

C1(s) = 6.1467 +
1.0712

s0.9528
+ 0.8497s0.8936

and

C2(s) = 5.1524 +
0.3227

s1.0554
+ 2.4827s0.010722.

The composite control law

C(s) =

(

1− γ(x1)
)

C1(s) + γ(x1)C2(s)

2

is then verified with both models G1(s) and G2(s) using the stability test
with step size of ∆γ = 0.01 and minimum commensurate order
qmin = 0.01. The result of the test is that the closed-loop systems are
stable in case of both fractional models.



Experimental results: Tuning the FOPID

controller for the middle tank
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Once the gain and order scheduled composite controller is designed, it is
plugged into the simulated control system, and a FOPID controller is designed
for the second tank using the same optimization tool. In addition, we consider
the following:

• Frequency-domain specifications are not applicable, since we do not have a
linear model of this process.

• The application of the Dµ component is not very desirable in this case due
to higher levels of noise.

Therefore we design a FOPI controller based only on optimization of the
transient response of the control system in the time domain. The following
controller is obtained:

C3(s) = 5.0000 +
0.06081

s0.1029

which is essentially a proportional controller with a weak fractional-order
integrator.



Experimental results: The complete control

system in Simulink
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Experimental results: Control system

performance
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Conclusions and further perspectives
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• In the contribution, we have presented initial results in relation to an
efficient gain and order scheduled control method involving a composite
control law comprised of FOPID controllers applied to the problem of level
control in a multi-tank system;

• The proposed method was successfully applied to the control problem, and
relevant results were presented and analyzed;

• The proposed method is quite simple, requires only static description of the
FOPID controllers and therefore may be employed in, e.g., automatic
tuning for efficient control of nonlinear systems with across a large
operating range. This result may be implemented in embedded control
applications, which also forms an important part of our future work;

• However, we perform only heuristic linear stability analysis of the resulting
composite control system. It would be more beneficial to consider stability
analysis of the nonlinear system. In addition, further work may be carried
out to design a more efficient controller for the middle tank, such that
would minimize the switching of automatic valves.



Further: GOS FOPID control of level in the

first tank via visual feedback
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Further: GOS FOPID control of level in the

first tank via visual feedback: Results
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Thank you for listening!
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