
Embedded System Implementation of Dig-
ital Fractional Filter Approximations for
Control Applications

Aleksei Tepljakov, Eduard Petlenkov, Juri Belikov

June 21, 2014

Motivation, contribution, and outline

Aleksei Tepljakov 2 / 28

• Our long-term goal is to design and build a fractional-order PID-type
controller capable of efficient and reliable self-tuning for robust industrial
process control.

• Here we treat the problem of fractional-order digital filter synthesis for
embedded control applications. Summary of the contribution is as follows:

◦ We use the well-established Oustaloup filter method for obtaining
continuous-time zeros and poles and apply a discrete-time
transformation yielding the digital filter.

◦ Further, the zero-pole representation is converted to the second-order
section form to ensure computational stability of the resulting filter.

◦ We then implement the fractional-order PID controller software for the
Atmel AVR ATmega8A microcontroller, and test it using a
MATLAB/Simulink based real-time simulation platform.

• We consider a particular plant as an example—a laboratory system
comprising a set of coupled tanks.

Fractional Calculus: The generalized
operator

Aleksei Tepljakov 3 / 28

Fractional calculus is a generalization of integration and
differentiation to non-integer order operator aD

α
t , where a and t

denote the limits of the operation and α denotes the fractional
order such that

aD
α
t =















dα

dtα
ℜ(α) > 0,

1 ℜ(α) = 0,
∫ t

a
(dτ)−α ℜ(α) < 0,

(1)

where generally it is assumed that α ∈ R, but it may also be a
complex number. We restrict our attention to the former case.

Fractional Calculus: Laplace transform

Aleksei Tepljakov 4 / 28

Assuming zero initial conditions, the Laplace transform of the
fractional derivative with α ∈ R

+ is given by

∫

∞

0

e−st
0D

α
t f(t)dt = sαF (s), (2)

where s = σ + iω is the Laplace transform variable and F (s) is the
Laplace image of f(t). Thus a fractional-order differential equation
can be expressed in transfer function form in the Laplace domain as
follows

G (s) =
bmsβm + bm−1s

βm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (3)

Fractional-order Controllers

Aleksei Tepljakov 5 / 28

The fractional PIλDµ controller, where λ and µ denote the orders of the
integral and differential components, respectively, is given by

C(s) = Kp +
Ki

sλ
+Kd · s

µ. (4)

The transfer function, corresponding to the fractional lead-lag
compensator of order α, has the following form:

CL(s) = K

(

1 + bs

1 + as

)α

. (5)

When α > 0 we have the fractional zero and pole frequencies ωz = 1/b,
ωh = 1/a and the transfer function in (5) corresponds to a fractional
lead compensator. For α < 0, a fractional lag compensator is obtained.

Original Oustaloup method: Brief summary

Aleksei Tepljakov 6 / 28

Given the approximation frequency range [ωb, ωh] rad/s, order of
approximation ν ∈ Z

+ and fractional power α ∈ [−1, 1] ⊂ R, we
proceed to compute (2ν + 1) zeros and (2ν + 1) poles of the filter
as

ω′

k = ωbθ
(k+ν+0.5−0.5α)

2ν+1 , ωk = ωbθ
(k+ν+0.5+0.5α)

2ν+1 , (6)

where k = {−ν,−ν + 1, . . . , 0, . . . , ν − 1, ν} and θ = ωh/ωb.
Thus the continuous recursive Oustaloup filter transfer function,
approximating an operator sα, is obtained in the form

Ĝ(s) = ωα
h

(s− ω′

−ν)(s− ω′

−ν+1) · · · (s− ω′

ν)

(s− ω−ν)(s− ω−ν+1) · · · (s− ων)
. (7)

Oustaloup filter approximation example

Aleksei Tepljakov 7 / 28

Consider a fractional-order transfer function

G(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
,

and approximation parameters ω = [10−4; 104], N = 5.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Step Response

Time (sec)

A
m

pl
itu

de

Grunwald−Letnikov

Oustaloup filter

Refined Oustaloup filter

10
−5

10
0

10
5

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

−250

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

Oustaloup filter

Refined Oustaloup filter

Original plant

Oustaloup filter

Discrete-time Oustaloup approximation

Aleksei Tepljakov 8 / 28

Suppose that we are given a sampling interval Ts ∈ R
+. Then we

may set the higher frequency bound of approximation (6) to

ωh = 2/Ts.

Consider the zero-pole matching equivalents method for obtaining
a discrete-time equivalent of a continuous time transfer function.
The following mapping is used:

z = esTs . (8)

Therefore, for each k in (6) we take

σ′

k = e−Tsω
′

k , σk = e−Tsωk . (9)

Discrete-time Oustaloup approximation
(continued)

Aleksei Tepljakov 9 / 28

We now need to compute the gain Ku of the resulting discrete-time system at
the central frequency ωu =

√
ωbωh by using

Ku =
∥

∥

∥
H(ejωuTs)

∥

∥

∥
. (10)

We also know the correct gain at this frequency

Ks = ωα
u . (11)

So finally we obtain the gain of the system as

Kc = Ks/Ku. (12)

The discrete-time system is thus described by a transfer function of the form

H(z) = Kc

(z − σ′

−ν)(z − σ′

−ν+1) · · · (z − σ′

ν)

(z − σ−ν)(z − σ−ν+1) · · · (z − σν)
. (13)

Considerations for embedded device
implementation

Aleksei Tepljakov 10 / 28

We would like to address the problems associated with
implementing the generation scheme described above on an
embedded device, such as a microcontroller. We have to take the
following into consideration:

• Performance limitations;

• Limited computational abilities;

• Potential memory size limitations.

The first item completely depends on the type of microprocessor
(and potentially additional hardware computational units) used in
the implementation. In what follows, we shall discuss issues related
to computational stability and memory management.

Finding the gain of the zero-pole matching
equivalents discrete-time approximation

Aleksei Tepljakov 11 / 28

We notice, that (10) involves computations with complex numbers. However,
we can compute the absolute value of a particular factor (z − σ) in (13) at the
frequency ωu as follows

∥

∥

∥
ejωuTs − σ

∥

∥

∥
=

∥

∥cos(ωuTs) + j sin(ωuTs)− σ
∥

∥ =

=
√

1− 2σ cos(ωuTs)− σ2 (14)

due to Euler’s formula and basic trigonometric transformations. The gain of
the system given by discrete-time zeros and poles in (9) may be computed by
means of

Ku =

ν
∏

k=−ν

(

1− σ′

kθ − (σ′

k)
2
)0.5

ν
∏

k=−ν

(

1− σkθ − σ2
k

)0.5

, (15)

where θ = 2 · cos(ωuTs) is constant and needs to be computed only once.

IIR filter implementation: Second-order
sections

Aleksei Tepljakov 12 / 28

Consider the set of discrete-time zeros (poles), that we have obtained earlier

z = {σ−ν , σ−ν+1, . . . , σ0, . . . σν , σν−1, σν} . (16)

Due to the generation method (6) the set in (16) is an ordered set. We have
2ν + 1 zeros (poles), so there are ν + 1 second-order sections (including a
single first-order section). Therefore, we have the polynomial

h(z) = (1− σνz
−1) ·

ν−1
∏

k=0

ζ(z−1) (17)

in the variable z, where ζ(z) = 1 + (ck + dk) z
−1 + (ck · dk) z−2,

ck = −σ−ν+2k and dk = −σ−ν+2k+1. So finally we arrive at the form

H(z) = Kc

ν
∏

k=1

1 + b0kz
−1 + b1kz

−2

1 + a0kz−1 + a1kz−2
, (18)

which can be effectively used as an IIR filter in control applications.

FOMCON toolbox for MATLAB:
doustafod(·) function

Aleksei Tepljakov 13 / 28

Calling sequence [upcoming toolbox release]:

Z = doustafod(r,N,wb,wh,Ts)

Output arguments:

• Z — a Control System toolbox zero-pole-gain model.

Input arguments:

• r — order of the operator in sr;

• N — order of approximation;

• ωb, ωh — lower and higher frequencies, respectively, which
determine the approximation range;

• Ts — desired sampling interval.

Realization: Static memory allocation size
requirements

Aleksei Tepljakov 14 / 28

We choose a sufficient maximal approximation order νmax. Suppose that a
floating-point datatype has a size of ψ bytes. First of all, to store arrays of
values for discrete zero/pole calculation:

Memory for zero/pole arrays = 2ψ(2νmax + 1) bytes. (19)

Now we provide the memory requirements for second-order section coefficient
storage:

Memory for SOS arrays = 4ψχ(νmax + 1) bytes, (20)

where χ is the number of approximated operators. Finally, for the digital signal
processing application:

Memory forDSP = 2ψχ(νmax + 1) bytes.

The total amount of memory required for the arrays is thus

Totalmemory = 2ψ
(

(3χ+ 2)νmax + 3χ+ 1
)

bytes. (21)

Digital realization of a fractional-order PID
controller

Aleksei Tepljakov 15 / 28

We may digitally implement the fractional-order PID controller as

HPIλDµ(z) = Kp +KiH
−λ
I (z) +KdH

µ
D(z), (22)

where Kp, Ki, and Kd are gains of the parallel form of the
controller, Hλ

I (z) corresponds to a discrete-time approximation of
a fractional-order integrator of order λ and Hµ

D(z) corresponds to a
discrete-time approximation of a fractional-order differentiator of
order µ. In addition, we have

0 6 λ, µ 6 1. (23)

Note, that by choosing the appropriate frequencies of
approximation we may also implement a fractional lead or lag
compensator using this method.

Fractional-order integrator: Implementation
considerations

Aleksei Tepljakov 16 / 28

We now address the issue of implementing the fractional-order integrator
component. A continuous-time integrator of order λ has to be
implemented as

GI(s) =
1

sλ
=

s1−λ

s

to ensure a nice control effect at lower frequencies. Its discrete-time
equivalent is given by

HI(z) = H1−λ(z) ·HI(z), (24)

where H1−λ(z) is computed using the method presented above, and

HI(z) =
Ts

(1− z−1)
(25)

is a simple discrete-time integrator.

PIµDµ controller operation: IIR filter reset
logic

Aleksei Tepljakov 17 / 28

Finally, we address the state reset logic for the IIR filters and the
integrator in (25). Denote by e(k) the kth sample of the error
signal e(·). We propose the following filter memory reset logic
based on the notion of a maximal error change rate margin ρ. The
reset condition is expressed as follows

∣

∣e(k)− e(k − 1)
∣

∣ > ρ. (26)

Thus, if the controller detects a sudden change in the error signal,
IIR filter and integer-order integrator memory will be cleared,
yielding zero initial conditions for the whole fractional-order PID
controller. It is important to select the value of the margin ρ well
above measurement noise or potential disturbance level.

Choosing a microcontroller for the
implementation: Atmel AVR 8-bit family

Aleksei Tepljakov 18 / 28

Our choice for the implementation of the fractional-order PID controller
prototype in this work is the Atmel AVR ATmega8A microcontroller.
This is due to several reasons:

• The microcontroller technology in question is stable, reliable and
thoroughly tested since its introduction.

• This microcontroller family is very popular, and has been used in
numerous applications in the industry.

• The chip itself is inexpensive and widespread.

We study the performance of this microcontroller for the fractional-order
PID controller generation as well as DSP functions. Additionally, we
employ external A/D and D/A converters in our FOPID controller
prototype to bypass some DAQ hardware limitaions of the
microcontroller yielding a system with 12 bit sample resolution.

Experiments with controller
implementation: Hardware platform

Aleksei Tepljakov 19 / 28

Control experiment: Coupled tanks
experiment

Aleksei Tepljakov 20 / 28

The system is modeled in continuous time in
the following way:

ẋ1 =
1

A
u1 − d12 − w1c1

√
x1, (27)

ẋ2 =
1

A
u2 + d12 − w2c2

√
x2,

where x1 and x2 are levels of fluid, A is the
cross section of both tanks; c1, c2, and c12 are
flow coefficients, u1 and u2 are pump powers;
valves are denoted by wi : wi ∈ {0, 1} and

d12 = w12 · c12·sign(x1 − x2)
√

|x1 − x2|.

Control experiment: Coupled tanks
experiment (continued)

Aleksei Tepljakov 21 / 28

In our experiments a model of a laboratory plant—coupled fluid
tanks—is running in Simulink and it is our task to control this plant
by means of our external controller prototype using a DAQ board.

Further, we provide performance evaluation figures based on the
time it takes for the microcontroller to compute a particular FOPID
approximation and to do a single sample computation. The
microcontroller is clocked at 16MHz and is running firmware
written in C-language and compiled with AVR-GCC with
optimization level “O1”. In this experiment, we generate a FOPID
with the following parameters:

Kp = 6.9514, Ki = 0.13522, Kd = −0.99874,

λ = 0.93187, µ = 0.29915. (28)

Controller synthesis: Results

Aleksei Tepljakov 22 / 28

The suitable frequency range for an Oustaloup filter of order ν = 5
is ω = [0.0001, 10] rad/s with νmax = 10. The sampling interval is
Ts = 0.2s. Denote by τg and τs the time interval that is required
for controller generation and sample computation, respectively,
under the conditions above. We have the following per the report
of AVR Simulator:

τg = 28.629ms, τs = 1.670ms.

Thus, sampling rates up to fs = 500 Hz are possible. Note,
however, that it takes much longer to compute the controller. This
should be considered when the controller, running in a closed loop,
needs to be recomputed.

Controller synthesis: Performance

Aleksei Tepljakov 23 / 28

Table 1: Time requirements for controller generation and sample
computation for different Oustaloup filter orders

ν τg [ms] τs [ms] Max. applicable fs [Hz]

6 32.2914 1.9868 480

7 37.1326 2.0832 450

8 42.2011 2.1796 425

9 46.8712 2.2759 400

10 51.5617 2.3723 400

Control experiment: External FOPID vs.
Simulated FOPID

Aleksei Tepljakov 24 / 28

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

Le
ve

l [
m

]

External controller
Simulated controller

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

 la
w

 u
(t

)

0 20 40 60 80 100 120
0

0.5

1

Time [s]

w
(t

)

Conclusions

Aleksei Tepljakov 25 / 28

• In this paper we have touched upon the important topic of
digital approximations of fractional-order differential and
integral operators.

• A discrete-time implementation method, based on the
Oustaloup recursive filter, was introduced.

• The implementation of a fractional-order PID controller was
discussed.

• The method was successfully tested on an Atmel AVR
ATmega8A microcontroller.

• Further research should cover automatic tuning opportunities
and implementations thereof on other microcontroller families.

Acknowledgement

Aleksei Tepljakov 26 / 28

Supported by the Tiger University Program of the Information
Technology Foundation for Education.

More information about HITSA can be found on the website:

http://www.hitsa.ee/en/

http://www.hitsa.ee/en/

FOMCON project: Fractional-order
Modeling and Control

Aleksei Tepljakov 27 / 28

• Official website: http://www.fomcon.net/

• Toolbox for MATLAB available;

• An interdisciplinary project supported by the Estonian Doctoral
School in ICT and Estonian Science Foundation grant nr. 8738.

Discussion

Aleksei Tepljakov 28 / 28

Thank you for listening!

Aleksei Tepljakov

Engineer/PhD student at Alpha Control Lab, TUT

http://www.a-lab.ee/, http://www.ttu.ee/

aleksei.tepljakov@ttu.ee

	Motivation, contribution, and outline
	Fractional Calculus: The generalized operator
	Fractional Calculus: Laplace transform
	Fractional-order Controllers
	Original Oustaloup method: Brief summary
	Oustaloup filter approximation example
	Discrete-time Oustaloup approximation
	Discrete-time Oustaloup approximation (continued)
	Considerations for embedded device implementation
	Finding the gain of the zero-pole matching equivalents discrete-time approximation
	IIR filter implementation: Second-order sections
	FOMCON toolbox for MATLAB: doustafod() function
	Realization: Static memory allocation size requirements
	Digital realization of a fractional-order PID controller
	Fractional-order integrator: Implementation considerations
	PID controller operation: IIR filter reset logic
	Choosing a microcontroller for the implementation: Atmel AVR 8-bit family
	Experiments with controller implementation: Hardware platform
	Control experiment: Coupled tanks experiment
	Control experiment: Coupled tanks experiment (continued)
	Controller synthesis: Results
	Controller synthesis: Performance
	Control experiment: External FOPID vs. Simulated FOPID
	Conclusions
	Acknowledgement
	FOMCON project: Fractional-order Modeling and Control
	Discussion

