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Motivation, contribution, and outline
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• PID controllers are widely used for industrial process control due to their
relative simplicity and applicability to a wide range of industrial control
problems. Fractional-order PID controllers offer more tuning flexibility;

• The main contributions of the presented paper:

◦ First, a set of rules for selecting the orders of the integrator and
differentiator of the FOPID controller is proposed;

◦ A system of three nonlinear equations in three unknowns is constructed.
The solution of this system grants the gains of the FOPID controller.
Newton’s method in multiple dimensions is adopted to the particular
problem and a corresponding algorithm is outlined.

◦ The algorithm is verified on an embedded device and in a
hardware-in-the-loop control experiment;

• Finally, conclusions and further research perspectives are given.
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Basics of fractional calculus
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Fractional calculus is a generalization of integration and
differentiation to non-integer order operator aD

α
t , where a and t

are the limits of the operation and α ∈ R is the fractional order

aD
α
t =















dα

dtα ℜ(α) > 0,

1 ℜ(α) = 0,
∫ t

a
(dτ)−α ℜ(α) < 0.

(1)

The following relation holds for noninteger exponentiation of the
imaginary unit j and is frequently encountered in fractional
calculus. We shall make extensive use of it throughout this talk.

jα = cos
(

απ
2

)

+ j sin
(

απ
2

)

(2)



Process models
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Consider the following generalizations of conventional process
models used in industrial control design.

(FO)FOPDT G(s) = K
1+Ts

e−Ls G(s) = K
1+Tsα

e−Ls

(FO)IPDT G(s) = K
s
e−Ls G(s) = K

sα
e−Ls

(FO)FOIPDT G(s) = K
s(1+Ts)e

−Ls G(s) = K
s(1+Tsα)e

−Ls



Fractional-order controllers
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The fractional PIλDµ controller, where λ and µ denote the orders of the
integral and differential components, respectively, is given by

C(s) = Kp +Kis
−λ +Kd · sµ. (3)

The transfer function, corresponding to the fractional lead-lag
compensator of order α, has the following form:

CL(s) = K

(

1 + bs

1 + as

)α

. (4)

When α > 0 we have the fractional zero and pole frequencies ωz = 1/b,
ωh = 1/a and the transfer function in (4) corresponds to a fractional
lead compensator. For α < 0, a fractional lag compensator is obtained.



The FFOPDT process model
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Recall, that the FO-FOPDT model is given by the following
transfer function

G(s) =
Ke−Ls

Tsα + 1
, (5)

where it is assumed that K > 0, T > 0, L > 0 and α ∈ (0, 2]. We
suppose that all of the parameters of this plant are known a priori.
They may be obtained, for instance, by employing an identification
procedure of a real life process. We begin the analysis by deriving
the equations to obtain the magnitude and phase angle of G(jω).
This is done by replacing s = jω in (5), employing (2), and
isolating the real and complex parts of the resulting expression as
z = a+ jb. Then, the magnitude A and phase angle ϕ are simply
computed as A =

√
a2 + b2, ϕ = tan−1(b/a).



The FFOPDT process model: Magnitude

and phase response
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Magnitude:

∣

∣G(jω)
∣

∣ =
|K|

√

1 + T 2ω2α + 2Tωα cos
(

απ
2

)

(6)

Phase angle:

arg
(

G(jω)
)

= −Lω − tan−1

(

T sin
(

απ
2

)

ω−α + T cos
(

απ
2

)

)

. (7)

The obtained relations will be used in the following calculations.



FOPID controller: Magnitude response
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We derive the expression for the magnitude response as

∣

∣C(jω)
∣

∣ =
√

C2
R(ω) + C2

I (ω), (8)

where

CR(ω) = Kp + ω−λKi cos
(

λπ
2

)

+ ωµKd cos
(

µπ
2

)

(9)

and
CI(ω) = −ω−λKi sin

(

λπ
2

)

+ ωµKd sin
(

µπ
2

)

. (10)



FOPID controller: Phase angle
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The phase angle of the FOPID controller may be computed using

arg
(

C(jω)
)

= tan−1

(

CN (ω)

CD(ω)

)

, (11)

where
CN (ω) = ωλ+µKd sin

(

µπ
2

)

−Ki sin
(

λπ
2

)

(12)

and

CD(ω) = Ki cos
(

λπ
2

)

+ ωλ
(

ωµKd cos
(

µπ
2

)

+Kp

)

. (13)



Tuning FOPID controllers for the FFOPDT

model
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We have five parameters to tune, out of which two are selected
based on some concrete rule. The other three parameters must be
optimized to satisfy three design specifications. Current
implementation is as follows:

• Choose λ—the order of the fractional integrator—according to
the F-MIGO rule;

• Choose µ—the order of the fractional differentiator—according
to control system output signal measurement SNR (no concrete
relation yet);

• Select three design specifications, form three equations for Kp,
Ki and Kd—the FOPID controller gains—and use the Newton
method to solve the system of these equations.



FOPID control for FFOPDT: F-MIGO
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The F-MIGO method has been developed based on observations
using a test batch of regular FOPDT models used for FOPI
controller design. Based on the relative dead time parameter

τ =
L

L+ T
(14)

the following rule was established for selecting the order of the
fractional integrator

λ =























1.1, τ > 0.6,

1.0, 0.4 6 τ < 0.6,

0.9, 0.1 6 τ < 0.4,

0.7, τ < 0.1.

(15)



FOPID control for FFOPDT: The Newton

method
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We have x = [ Kp Ki Kd ]⊤ and must solve for ∆x the matrix equation

J∆x = −F. (16)

The next iterate is computed as x+ = x+∆x, where

J =











∂κ1(·)
∂Kp

∂κ1(·)
∂Ki

∂κ1(·)
∂Kd

∂κ2(·)
∂Kp

∂κ2(·)
∂Ki

∂κ2(·)
∂Kd

∂κ3(·)
∂Kp

∂κ3(·)
∂Ki

∂κ3(·)
∂Kd











(17)

is the Jacobian matrix and

F =
[

κ1(·) κ2(·) κ3(·)
]

⊤

(18)

is the specifications vector. Both J and F are evaluated at the current value of
x. Then x← x+ and the process continues until either the design goal is
satisfied, or divergence or excess of allowed number of iterations is detected.



FOPID control for FO-FOPDT: Chosen

specifications
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The following specifications are considered:

• Gain crossover frequency ωc;

• Phase margin ϕm (in radians) which is computed using
knowledge of ωc;

• Robustness to gain variations ψ′

gm(ωc) = 0.

The following functions are thus constructed:

κ1(·) = |C(jωc)| · |G(jωc| − 1, (19)

κ2(·) = arg(C(jωc)) + arg(G(jωc)) + π − ϕm, (20)

κ3(·) = ψ′

gm(ωc). (21)



Algorithm: Determination of FOPID

Controller Gains
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procedure FOPIDDesign(g0, ωc, ϕm, Gm)
ǫ← Tolerance, ǫm ← MachineTolerance
g ← g0, k ← 0, ν ← MaxIterations
while k < ν do

if det J < ǫm then return {−1, g}
end if

if G∗

m < Gm then return {−2, g}
end if

if ‖Fs‖2 < ǫ then return {1, g}
end if

g ← g − J−1Fs

k ← k + 1
end while

return {0, g}
end procedure



Algorithm: Determination of FOPID

Controller Gains: Return Codes
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Table 1: Meaning of optimization procedure return codes

Code Description

−2 Additional condition not satisfied—the gain margin
G∗

m computed for the control system is less than the
value given in Gm.

−1 Singular Jacobian matrix—local minimum possible.

0 Maximum number of algorithm iterations reached.

1 All conditions satisfied, successful termination.



FOPID control for FFOPDT: Example
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Consider a plant

G(s) =
66.16e−1.93s

12.72s0.5 + 1
(22)

which represents a model of a heating process. In the following, we illustrate
the controller design procedure. Specifications are ωc = 0.1, ϕm = 60◦, and
ψ′

gm(ωc) = 0.

In this case, F-MIGO yields λ = 0.9 and we choose µ = 0.5. For this problem
we take the initial solution as

Kp = Ki = Kd = 1/K = 1/66.16 = 0.0151 (23)

and apply Newton’s method. The following gains are obtained:

Kp = −0.002934, Ki = 0.01030, Kd = 0.05335. (24)



FOPID Control for FFOPDT: Frequency

Response
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Bode Diagram
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Illustrative Example: Hardware-in-the-Loop

Real-time Experiment
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PC connection
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Illustrative Example: Pure Software

Simulations of the FOPID Control System
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Conclusions and Further Perspectives
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• In this paper, we have presented a method for designing FOPID
controllers for FFOPDT plants based on available autotuning data.

• The tuning method was validated on a model of a heating process
and successfully implemented on an embedded device.

• Experimental results involving real-time hardware-in-the-loop
simulations confirm the validity of the proposed approach.

• A problem with conventional tuning approach was found, where the
time constant of the system was not correctly identified. A more
sophisticated tuning approach, which falls outside of the scope of this
paper, may be used to tackle the issue.

• Research efforts should also be dedicated to developing a set of rules
for selecting the orders of the FOPID controller integrator and
differentiator components.



Future work: FOPID Controller Hardware

Prototype
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FOMCON project: Fractional-order

Modeling and Control
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• Official website: http://fomcon.net/

• Toolbox for MATLAB available;

• An interdisciplinary project supported by the Estonian Doctoral
School in ICT and Estonian Science Foundation grant nr. 8738.

http://fomcon.net/
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Thank you for listening!

Aleksei Tepljakov
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