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Time Scale Calculus

Time scale is a model of time

Definition 1

A time scale T is an arbitrary nonempty closed subset of the set R of real numbers.

T = R continuous time

T = Z discrete time

T = τZ :={τk | k ∈ Z} , τ > 0 discrete time

T = Pa,b :=
∞⋃
k=0

[k(a + b), k(a + b) + a]

Nonuniform discrete time

Hybrid time
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Time Scale Calculus
Basic operators

I The forward jump operator σ : T→ T is defined by

σ(t) := inf {τ ∈ T | τ > t} .

I The backward jump operator ρ : T→ T is defined by

ρ(t) := inf{τ ∈ T | τ > t}.

I The graininess function µ : T→ [0,∞) is defined by

µ(t) := σ(t)− t.

A time scale T is called homogeneous if µ ≡ const.
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Time Scale Calculus
Basic operators: example

The following table presents operators for typical cases of T, where id means identity
operator and ξσ = ξ ◦ σ.

Table: Basic types of operators

T σ(t) ρ(t) µ(t)

R id id 0

hZ t + h t − h h

qZ qt t/q (q − 1)t

Pa,b

t t 0 t ∈
⋃∞

k=0 [k(a + b), k(a + b) + a]

t + b t − b b t ∈
⋃∞

k=0 {k(a + b) + a}
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Time Scale Calculus
Delta derivative and Integration

Delta derivative of f : T→ R, denoted by f ∆(t), can be defined as the extension of
standard time-derivative in the continuous-time case.

Indefinite integral: ∫
f (t)∆t = F (t) + C .

The Cauchy integral: ∫ b

a

f (t)∆t = F (a)− F (b) for all a, b ∈ T.
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Time Scale Calculus
Examples

The following table presents the operators for typical cases of T, where a < b.

Table: Delta (anti)derivative

T ξ∆(t)
∫ b

a
f (t)∆t

R dξ(t)
dt

∫ b

a
f (t)dt

hZ ξ(t+h)−ξ(t)
h

∑b/h−1
k=a/h hf (kh)

qZ ξ(qt)−ξ(t)
(q−1)t

∑b/q
t=a

ξ(t)
(q−1)t
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Switched Linear Control Systems
System defined on time scales

Consider a switched linear control system defined on a time scale T

x∆(t) = As(t)x(t) + Bs(t)u(t), (1)

I x(t) ∈ Rn is a vector of state variables;

I u(t) ∈ Rm is a vector of input functions;

I s : T→ N = {1, 2, . . . , l} is the switching law to be designed;

I As(t) ∈ Rn×n,Bs(t) ∈ Rn×m are constant matrices;

I t ∈ T.
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Switched Linear Control Systems
General solution

Suppose that the switching signal is well-defined and its switching sequence is
{x0, (t0, i1), (t1, i2), . . . , (tl−1, il)}. As the i1th subsystem is active during [t0, t1) we have

x∆(t) = Ai1x(t) + Bi1u(t) with x(t0) = x0, t ∈ [t0, t1). (2)

Equation (2) is a linear delta differential equation with an initial condition, whose
solution is

x1 = eAi1
(t1, t0)x0 +

∫ t1

t0

eAi1
(t1, σ(τ))Bi1u(τ)∆τ.
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Switched Linear Control Systems
General solution (cont.)

Proceeding in the same manner the general solution of (1) is

x(t) = eAik
(t, tk−1) · · · eAi1

(t1, t0)x0+

eAik
(t, tk−1) · · · eAi2

(t2, t1)

∫ t1

t0

eAi1
(t1, σ(τ))Bi1u(τ)∆τ

+ · · ·+ eAik
(t, tk−1)

∫ tk−1

tk−2

eAik−1
(tk , σ(τ))Bik−1u(τ)∆τ+∫ t

tk−1

eAik
(t, σ(τ))Biku(τ)∆τ,

where t ∈ [tk−1, tk) for k = 1, . . . , l with tl =: tf and i1 = s(t0), . . . , il = s(tl−1).

Juri Belikov, Aleksei Tepljakov (TUT) European Control Conference July 16, 2015 9 / 17



Controllability of switched systems
Basic definitions

Definition 2

System (1) is said to be controllable at t0, if for any initial state x0 and any final state xf
there exist a time tf > t0, a switching path s : [t0, tf ]→ N , and inputs u : [t0, tf ]→ Rp

such that x(t; t0, x0, u, s) = xf .

Definition 3

The controllable set of system (1) is the set of states which are controllable.

Definition 4

System (1) is said to be (completely) controllable, if its controllable set is Rn.
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Controllability of switched systems
Sufficiency

Let us define the controllability matrix of the pair (Aik ,Bik ), for k = 1, . . . , l , as

Cik :=
[
Bik AikBik · · · An−1

ik
Bik

]
.

Then, the collection of matrices Cik can be denoted by

C :=
[
Ci1 Ci2 · · · Cil

]
.

Theorem 5

The switched linear system (1) with l modes is controllable, if the controllability matrix C
is of full rank, i.e., rank C = n.
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Controllability of switched systems
Illustrative example (sufficiency)

Consider a binary-mode switched linear control system (1) defined on a time scale T

A1 =

0 1 0
0 0 1
0 0 0

 , B1 =

0
1
0

 , A2 =

0 0 0
1 0 0
0 1 0

 , B2 =

0
0
1

 .
The controllability matrix can be calculated as C =

[
Ci1 Ci2

]
, where

Ci1 =
[
B1 A1B1 A1B1

]
=

0 1 0
1 0 0
0 0 0

 ,
Ci2 =

[
B2 A2B2 A2B2

]
=

0 0 0
0 0 0
1 0 0

 .
Observe that separately the subsystems are not controllable, since

rank Ci1 = 2 and rank Ci2 = 1.

However, according to Theorem 5, the overall switched system is controllable, since

rank C = 3.
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Controllability of switched systems
Necessity

Let
γk(i1, . . . , ik) =

[
Ajk

ik
· · ·Aj1

i1
Bi1

]
jk ,...,j1∈{0,1,...,n−1}

,

where power indices j1, . . . , jk take all the possible values from the set {0, 1 . . . , n − 1}
and mode indices i1, . . . , ik take all possible values from the set N . Next, based on the
definition of γk a new matrix Γk can be constructed as

Γ0(i) = γ1(i), . . . , Γk(i) =
[
γk+1(i , i1, . . . , ik)

]
i1,...,ik∈N

with i1 6= i , . . . , ik 6= ik−1. Now, the system joint controllability matrices are defined as

W0 =
[
Γ0(1) · · · Γ0(l)

]
, . . . ,Wk =

[
Γk(1) · · · Γk(l)

]
.

Wk is the kth-order joint controllability matrix.

Theorem 6

If system (1) is controllable, then the kth-order system joint controllability matrix is of
full rank, i.e., rankWk = n.
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Controllability of switched systems
Illustrative example

Consider a switched linear control system with two subsystems

A1 =

[
1 0
0 0

]
, B1 =

[
0
0

]
, A2 =

[
0 1
0 0

]
, B2 =

[
1
0

]
.

The joint controllability matrix is

W2 =
[
Γ2(1) Γ2(2)

]
=
[
B1 A1 A1B1 A2A1B1 A2B1 B2 A2 A2B2 A1A2B2 A1B2

]
=

[
0 1 0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

]
.

One may easily check that rankW2 = 1. Hence, the necessary condition of Theorem 6 is
not satisfied, and therefore, the system is not controllable.
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Conclusions

I The paper addresses the controllability problem of switched linear systems defined
on a time scale

I The algebraic point of view is used to derive unified conditions.

I The time scales calculus based approach is used to justify the validity of obtained
conditions for a large class of systems defined in different time domains
accommodated by recalled formalism.

I The necessary and sufficient controllability conditions are separately formulated in
terms of specific matrices that are extensions of those derived for LTI systems.
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Controllability of switched systems
Motivating example for further research

Consider a model of PWM-driven boost converter in the form of switched linear control
system (1) with two subsystems defined on a time scale T

A1 =

− 1

RC

1

C

− 1

L
0

 , B1 =

[
0
0

]
, A2 =

[
− 1

RC
0

0 0

]
, B2 =

[
0
1

L

]
,

where the constant parameters L,C ,R represent, respectively, the inductance,
capacitance, load resistance. Note that s(t) ∈ {1, 2} and n = 2, m = 1, l = 2.
Sufficiency: the controllability matrix can be calculated as C =

[
Ci1 Ci2

]
, where

Ci1 =
[
B1 A1B1

]
=

[
0 0
0 0

]
, Ci2 =

[
B2 A2B2

]
=

[
0 0
1
L

0

]
.

The sufficient condition given in Theorem 5 is not satisfied, since rank C = 1.
Necessity: the joint controllability matrix is

W2 =
[
Γ2(1) Γ2(2)

]
=

 0 0 0 0
1

CL
0 0 0

1

L
0 0 0 0 0 0 0

 .
The necessary controllability condition of Theorem 6 is satisfied, since rankW2 = 2.
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Thank you very much for your attention!

Any questions?
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