

Robust FOPI and FOPID Controller Design for FFOPDT Plants in Embedded Control Applications using Frequency-domain Analysis

A. Tepljakov, E. Petlenkov, J. Belikov

July 2, 2015

- PID controllers are widely used for industrial process control due to their relative simplicity and applicability to a wide range of industrial control problems. Fractional-order PID controllers offer more tuning flexibility;
- The main contributions of the presented paper:
 - We derive the frequency-domain characteristics necessary for robust FOPI or FOPID controller design based on constrained optimization;
 - Since the equations cannot usually be solved algebraically, a modified Newton-Raphson method is proposed. It is tailored to each problem of finding a particular crossover frequency;
 - Having such a set of equations and means of solving them makes it possible for the control engineer to select a particular optimization algorithm based on frequency-domain evaluation of performance criteria;
- Finally, conclusions and further research perspectives are given.

- PID controllers are widely used for industrial process control due to their relative simplicity and applicability to a wide range of industrial control problems. Fractional-order PID controllers offer more tuning flexibility;
- The main contributions of the presented paper:
 - We derive the frequency-domain characteristics necessary for robust FOPI or FOPID controller design based on constrained optimization;
 - Since the equations cannot usually be solved algebraically, a modified Newton-Raphson method is proposed. It is tailored to each problem of finding a particular crossover frequency;
 - Having such a set of equations and means of solving them makes it possible for the control engineer to select a particular optimization algorithm based on frequency-domain evaluation of performance criteria;
- Finally, conclusions and further research perspectives are given.

- PID controllers are widely used for industrial process control due to their relative simplicity and applicability to a wide range of industrial control problems. Fractional-order PID controllers offer more tuning flexibility;
- The main contributions of the presented paper:
 - We derive the frequency-domain characteristics necessary for robust FOPI or FOPID controller design based on constrained optimization;
 - Since the equations cannot usually be solved algebraically, a modified Newton-Raphson method is proposed. It is tailored to each problem of finding a particular crossover frequency;
 - Having such a set of equations and means of solving them makes it possible for the control engineer to select a particular optimization algorithm based on frequency-domain evaluation of performance criteria;
- Finally, conclusions and further research perspectives are given.

- PID controllers are widely used for industrial process control due to their relative simplicity and applicability to a wide range of industrial control problems. Fractional-order PID controllers offer more tuning flexibility;
- The main contributions of the presented paper:
 - We derive the frequency-domain characteristics necessary for robust FOPI or FOPID controller design based on constrained optimization;
 - Since the equations cannot usually be solved algebraically, a modified Newton-Raphson method is proposed. It is tailored to each problem of finding a particular crossover frequency;
 - Having such a set of equations and means of solving them makes it possible for the control engineer to select a particular optimization algorithm based on frequency-domain evaluation of performance criteria;
- Finally, conclusions and further research perspectives are given.

- PID controllers are widely used for industrial process control due to their relative simplicity and applicability to a wide range of industrial control problems. Fractional-order PID controllers offer more tuning flexibility;
- The main contributions of the presented paper:
 - We derive the frequency-domain characteristics necessary for robust FOPI or FOPID controller design based on constrained optimization;
 - Since the equations cannot usually be solved algebraically, a modified Newton-Raphson method is proposed. It is tailored to each problem of finding a particular crossover frequency;
 - Having such a set of equations and means of solving them makes it possible for the control engineer to select a particular optimization algorithm based on frequency-domain evaluation of performance criteria;
- Finally, conclusions and further research perspectives are given.

Basics of fractional calculus

Fractional calculus is a generalization of integration and differentiation to non-integer order operator ${}_a\mathcal{D}^{\alpha}_t$, where a and t are the limits of the operation and $\alpha \in \mathbb{R}$ is the fractional order

$${}_{a}\mathcal{D}_{t}^{\alpha} = \begin{cases} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t^{\alpha}} & \Re(\alpha) > 0, \\ 1 & \Re(\alpha) = 0, \\ \int_{a}^{t} (\mathrm{d}\tau)^{-\alpha} & \Re(\alpha) < 0. \end{cases}$$
(1)

The following relation holds for noninteger exponentiation of the imaginary unit j and is frequently encountered in fractional calculus. We shall make extensive use of it throughout this talk.

$$j^{\alpha} = \cos\left(\frac{\alpha\pi}{2}\right) + j\sin\left(\frac{\alpha\pi}{2}\right) \tag{2}$$

Approximation of fractional operators: The Oustaloup filter

The Oustaloup recursive filter gives a very good approximation of fractional operators in a specified frequency range and is widely used in fractional calculus. For a frequency range (ω_b, ω_h) and of order N the filter for an operator $s^{\gamma}, 0 < \gamma < 1$, is given by

$$s^{\gamma} \approx K \prod_{k=-N}^{N} \frac{s + \omega_k'}{s + \omega_k}, \quad K = \omega_h^{\gamma}, \quad \omega_r = \frac{\omega_h}{\omega_b},$$

$$\omega_k' = \omega_h(\omega_r)^{\frac{k+N+\frac{1}{2}(1-\gamma)}{2N+1}}, \quad \omega_k = \omega_h(\omega_r)^{\frac{k+N+\frac{1}{2}(1+\gamma)}{2N+1}}.$$
(3)

The resulting model order is 2N + 1.

A modified Oustaloup filter has also been proposed in literature.

Oustaloup filter approximation example

Recall the fractional-order transfer function

$$G(s) = \frac{1}{14994s^{1.31} + 6009.5s^{0.97} + 1.69},$$

and approximation parameters $\omega = [10^{-4}; 10^4], N = 5.$

Process models

Consider the following generalizations of conventional process models used in industrial control design.

(FO)FOPDT
$$G(s) = \frac{K}{1+Ts}e^{-Ls}$$
 $G(s) = \frac{K}{1+Ts^{\alpha}}e^{-Ls}$

(FO)IPDT
$$G(s) = \frac{K}{s}e^{-Ls}$$
 $G(s) = \frac{K}{s^{\alpha}}e^{-Ls}$

(FO)FOIPDT
$$G(s) = \frac{K}{s(1+Ts)}e^{-Ls}$$
 $G(s) = \frac{K}{s(1+Ts^{\alpha})}e^{-Ls}$

Fractional-order controllers

The fractional $PI^{\lambda}D^{\mu}$ controller, where λ and μ denote the orders of the integral and differential components, respectively, is given by

$$C(s) = K_p + K_i s^{-\lambda} + K_d \cdot s^{\mu}. \tag{4}$$

The transfer function, corresponding to the fractional lead-lag compensator of order α , has the following form:

$$C_L(s) = K \left(\frac{1+bs}{1+as}\right)^{\alpha}.$$
 (5)

When $\alpha > 0$ we have the fractional zero and pole frequencies $\omega_z = 1/b$, $\omega_h = 1/a$ and the transfer function in (5) corresponds to a fractional lead compensator. For $\alpha < 0$, a fractional lag compensator is obtained.

Basics of fractional control: fractional control actions

Let a basic fractional control action be defined as $C(s) = K \cdot s^{\gamma}$. The control actions in the time domain for $\gamma \in [-1,1]$ with K=1 under different input signals are given below.

Fractional integrator $s^{-\gamma}$

Fractional differentiator s^{γ}

The modified Newton-Raphson method

Consider the problem of finding a root ω^* of a general nonlinear equation $f(\omega)=0$ under the constraints $\omega>0$ and $\omega\in(\omega_b,\omega_h)$. To tackle the problem one may employ the Newton-Raphson method which usually provides quadratic convergence to the solution. The process of locating the root starts at an initial guess ω_0 and is given by the following iterative formula:

$$\omega_{k+1} = \omega_k - f(\omega) \left(f'(\omega) \right)^{-1}. \tag{6}$$

Once a prescribed iteration limit ν is reached, or the necessary tolerance ϵ is achieved under the condition $f(\omega_k) < \epsilon$, the algorithm shall stop returning the root ω^* . However, there is a drawback of this algorithm such that local minima of $f(\omega)$ may lead to the change of sign of $f'(\omega)$ and a violation of the condition $\omega_m > 0$ at iteration step m = k+1 may occur. To rectify this, the locally obtained solution at step n may be replaced such that $\omega_n = \gamma_c \omega_k$, where $\gamma_c \neq 1$ is some predefined positive factor. If as a result of this modification ω_m no longer belongs to the interval (ω_b, ω_h) , the process shall fail returning $\omega^* = 0$ thereby indicating that it could not find a solution.

The modified Newton-Raphson method: Algorithm summary

```
procedure Newton(\omega_0, \gamma_c, \omega_b, \omega_h, f, f')
      \epsilon \leftarrow \text{Tolerance}, \ \nu \leftarrow \text{MaxIterations}
      k \leftarrow 0; \omega_k \leftarrow \omega_0
      while k < \nu and f(\omega) > \epsilon do
            \omega_{k+1} \leftarrow \omega_k - f(\omega_k)(f'(\omega_k))^{-1}
            if \omega_{k+1} < 0 then
                  \omega_{k+1} \leftarrow \gamma_c \cdot \omega_k
            end if
            if \omega_{k+1} < \omega_b or \omega_{k+1} > \omega_h then
                  return 0
            end if
            k \leftarrow k + 1
      end while
      return \omega_k
end procedure
```

The FO-FOPDT process model

Recall, that the FO-FOPDT model is given by the following transfer function

$$G(s) = \frac{Ke^{-Ls}}{Ts^{\alpha} + 1},\tag{7}$$

where it is assumed that $K>0,\ T>0,\ L>0$ and $\alpha\in(0,2].$ We suppose that all of the parameters of this plant are known a priori. They may be obtained, for instance, by employing an identification procedure of a real life process. We begin the analysis by deriving the equations to obtain the magnitude and phase angle of $G(j\omega)$. This is done by replacing $s=j\omega$ in (7), employing (2), and isolating the real and complex parts of the resulting expression as z=a+jb. Then, the magnitude A and phase angle φ are simply computed as $A=\sqrt{a^2+b^2}, \varphi=\tan^{-1}(b/a)$.

The FO-FOPDT process model: Gain crossover frequency and phase margin

Next we derive open-loop characteristics of this plant. We begin by obtaining the gain crossover frequency ω_c , for which it holds

$$\left| G(j\omega_c) \right| = 1.$$

Solving this equation yields

$$\omega_c = \left(\frac{\sqrt{K^2 + \cos^2\left(\frac{\alpha\pi}{2}\right) - 1} - \cos\left(\frac{\alpha\pi}{2}\right)}{T}\right)^{1/\alpha}.$$
 (8)

The phase margin φ_m of the system can then be determined from

$$\varphi_m = \pi - \arg(G(j\omega_c)) + 2\pi n, \quad n \geqslant 0.$$
 (9)

The FO-FOPDT process model: Phase crossover frequency and gain margin (1)

It is more difficult to derive a formula to find the phase crossover frequency, also referred to as the ultimate frequency of the system ω_u , since we need to solve a transcendental equation

$$-L\omega_u - \tan^{-1}\left(\frac{T\sin\left(\frac{\alpha\pi}{2}\right)}{\omega_u^{-\alpha} + T\cos\left(\frac{\alpha\pi}{2}\right)}\right) = -\pi - 2\pi n,\tag{10}$$

where n is determined by the requirement to obtain a minimum gain margin $1/\left|G(j\omega_u)\right|$ closest to unity. While ω_u is usually obtained during relay autotuning, if it is not given, then the following method may be used to compute it from the FFOPDT model parameters. We first introduce a function

$$\upsilon(\omega) = \arg(G(j\omega)) + \pi + 2\pi n. \tag{11}$$

The FO-FOPDT process model: Phase crossover frequency and gain margin (2)

We compute the derivative $dv(\omega)/d\omega$. After simplification we arrive at

$$v'(\omega) = -L - \frac{\alpha T \sin\left(\frac{\alpha \pi}{2}\right)}{\omega \left(2T \cos\left(\frac{\alpha \pi}{2}\right) + \omega^{-\alpha} + T^2 \omega^{\alpha}\right)}.$$
 (12)

We may now use the modified Newton's method to obtain ω_u . Note, that to locate the minimum stability margin we need to introduce a modification to the search algorithm, whereby instead of terminating upon obtaining a solution ω_u^* the gain margin $1/\left|G(j\omega)\right|$ at this frequency is checked. If it is found to be less than unity, the iterative process is repeated assigning $\omega_g\leftarrow\omega_u^*$, $\omega_0\leftarrow\omega_u^*$ and $n\leftarrow n+1$. This means that the search direction must be positive. The gain margin are then determined by means of

$$K_c = \min\left(\left|1 - 1/G(j\omega_g)\right|, \left|1 - 1/G(j\omega_u)\right|\right). \tag{13}$$

Note, that the search interval $\omega \in (\omega_b, \omega_h)$ is related to the band-limited Oustaloup approximation of a suitable fractional-order controller.

FO-FOPDT plant and FOPID controller: Open-loop characteristics

We can now derive the equations to compute the critical frequencies and corresponding stability margins of the open-loop control system given by $G_{ol}(j\omega) = C(j\omega)G(j\omega)$. A function $\psi_{pm}(\omega)$ for the phase margin is defined as

$$\psi_{pm}(\omega) := |C(j\omega)| \cdot |G(j\omega)| - 1 \tag{14}$$

To use the modified Newton-Raphson method to solve for ω_c the equation $\psi_{pm}(\omega_c)=0$ we need to compute the derivative $\psi'_{pm}(\omega)$. In the same manner, define the function $\psi_{gm}(\omega)$ for the gain margin

$$\psi_{gm}(\omega) = \arg\left(C(j\omega)\right) + \arg\left(G(j\omega)\right) + \pi + 2\pi n \tag{15}$$

and take the derivative $\psi'_{gm}(\omega)$. Then solve $\psi_{gm}(\omega_u) = 0$ for ω_u . Finally, to check whether phase is flat at ω_c , ensuring the robustness to gain variations specification, one may check whether the following relation holds

$$\psi_{gm}'(\omega_c) = 0. (16)$$

The equations to compute the sensitivity functions are derived in the same way.

Example: Computing the Gain Crossover Frequency

Suppose that a control system is given comprising a FFOPDT plant in (7) with parameters

$$K = 10, \quad L = 0.2, \quad T = 8.5, \quad \alpha = 1.5$$
 (17)

and a FOPID controller with parameters

$$K_p = 100, \quad K_i = 2, \quad \lambda = 0.75, \quad K_d = 3, \quad \mu = 0.35.$$
 (18)

The task is to locate the gain crossover frequency. This can be accomplished using the method described above.

10¹

10²

-1200 -1400

10⁻¹

Frequency [rad/s]

10⁰

10¹

10²

-1400

10⁻¹

Frequency [rad/s]

10⁰

Proposed tuning methods: Fractional power sweep

Summary of the method:

- 1. Consider the parameters ω_u and K_c of the FFOPDT model in (7);
- 2. Compute the parameter set $\theta_G = \{K_p, K_i, K_d\}$ of a conventional PID-type controller;
- 3. Design a cost function $J(\cdot)$ based on desired system performance according to frequency-domain specifications;
- 4. Do a sweep of parameters in the set $\theta_P = \{\lambda, \mu\}$ within a predefined region, computing the specifications using the provided equations;
- 5. Choose the best controller according to $\min J(\cdot)$.

This method is justified because in case of a model (7) we have a fractional plant to control.

Proposed tuning methods: Full controller parameter optimization

In this work, we do not consider expensive time-domain simulations as basis for evaluating closed-loop system performance as opposed to our earlier work. This comes at the expense of neglecting nonlinear effects, such as actuator saturation. Only frequency-domain specifications are used. Consider, for example, the following weighted cost function

$$J = w_1 \left| \varphi_m - \tilde{\varphi}_m \right| + w_2 \left| G_m - \tilde{G}_m \right| + w_3 \left| \left(\operatorname{d} \operatorname{arg} \left(C(j\omega) G(j\omega) \right) / \operatorname{d} \omega \right)_{\omega = \omega_c} \right|.$$
 (19)

The parameters of the controller $\theta = \{K_p, K_i, K_d, \lambda, \mu\}$ are then computed using a suitable optimization method.

Illustrative example: FOPI controller design

We consider here a FFOPDT model of a heating process. It is given by the following FFOPDT transfer function:

$$G(s) = \frac{66.16e^{-1.93s}}{12.72s^{0.5} + 1}. (20)$$

We shall now design a fractional-order controller to control this plant using the method discussed above, first choosing three different sets of conventional PI tuning rules. Namely, the classical Ziegler-Nichols method, the Cohen-Coon method, and the AMIGO method.

Since we are sweeping a single parameter, the weights of the cost in (19) are chosen such that $w_1=100/\pi$, $w_2=0$, $w_3=10$. The range of the integrator order sweep is selected as $\lambda \in [0.5, 1.5]$ with a step size of $\Delta \lambda = 0.05$. The desired phase margin is $\varphi_m=75^\circ$. In addition, any λ that yields a control system with a gain margin such that $G_m<2.5$ will be discarded.

Illustrative example: Tuning results

Method	K_p	K_i	λ^*	$arphi_m$	G_m
Ziegler-Nichols	0.4059	2.2021	_		
AMIGO	0.0024	0.0036	0.80	73.9°	30.7 dB
Cohen-Coon	0.0129	0.0375	0.55	74.7°	12.0 dB

As it can be seen, it was not possible to stabilize the control system in case of the Ziegler-Nichols tuning rules. However, in case of the AMIGO and Cohen-Coon tuning an suboptimal λ subject to given frequency-domain specifications, that is, the phase margin specification, was found.

Illustrative example: Hardware-in-the-Loop real-time experiment

Illustrative example: AMIGO PI vs. designed FOPI

Conclusions and further perspectives

- In this work we have presented a set of relations that enable frequency-domain analysis of a control system comprising a FFOPDT plant and a FOPID controller.
- Using the frequency-domain performance criteria it is possible to design a suitable numerical optimization method to achieve prescribed robustness requirements of the control system.
- Since the involved computations are relatively simple, they may be implemented on embedded hardware platforms with limited computational capabilities. Thereby the real-time controller design issue is tackled.
- Future research should cover the optimization process with the goal of utilizing the discussed methods in a fractional-order PID controller with automatic tuning capabilities.

Future work: FOPID controller hardware prototype

FOMCON project: Fractional-order Modeling and Control

- Official website: http://fomcon.net/
- Toolbox for MATLAB available;
- An interdisciplinary project supported by the Estonian Doctoral School in ICT and Estonian Science Foundation grant nr. 8738.

Acknowledgement

This work was partially supported by IT Academy. Please learn more about the program on the official website:

http://www.itakadeemia.ee/

Questions?

Thank you for listening!

Aleksei Tepljakov

Engineer/PhD student at Alpha Control Lab, TUT

http://www.a-lab.ee/, http://www.starspirals.net/
aleksei.tepljakov@ttu.ee, alex@starspirals.net