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Motivation, contribution, and outline
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• PID controllers are widely used for industrial process control due to their
relative simplicity and applicability to a wide range of industrial control
problems. Fractional-order PID controllers offer more tuning flexibility;

• The main contributions of the presented paper:

◦ We derive the frequency-domain characteristics necessary for robust
FOPI or FOPID controller design based on constrained optimization;

◦ Since the equations cannot usually be solved algebraically, a modified
Newton-Raphson method is proposed. It is tailored to each problem of
finding a particular crossover frequency;

◦ Having such a set of equations and means of solving them makes it
possible for the control engineer to select a particular optimization
algorithm based on frequency-domain evaluation of performance
criteria;

• Finally, conclusions and further research perspectives are given.
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Basics of fractional calculus
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Fractional calculus is a generalization of integration and
differentiation to non-integer order operator aD

α
t , where a and t

are the limits of the operation and α ∈ R is the fractional order

aD
α
t =















dα

dtα ℜ(α) > 0,

1 ℜ(α) = 0,
∫ t
a (dτ)

−α ℜ(α) < 0.

(1)

The following relation holds for noninteger exponentiation of the
imaginary unit j and is frequently encountered in fractional
calculus. We shall make extensive use of it throughout this talk.

jα = cos
(

απ
2

)

+ j sin
(

απ
2

)

(2)



Approximation of fractional operators: The
Oustaloup filter
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The Oustaloup recursive filter gives a very good approximation of
fractional operators in a specified frequency range and is widely
used in fractional calculus. For a frequency range (ωb, ωh) and of
order N the filter for an operator sγ , 0 < γ < 1, is given by

sγ ≈ K
N
∏

k=−N

s+ ω′

k

s+ ωk
, K = ωγ

h, ωr =
ωh

ωb
, (3)

ω′

k = ωb(ωr)
k+N+1

2 (1−γ)

2N+1 , ωk = ωb(ωr)
k+N+1

2 (1+γ)

2N+1 .

The resulting model order is 2N + 1.

A modified Oustaloup filter has also been proposed in literature.



Oustaloup filter approximation example

Aleksei Tepljakov 5 / 28

Recall the fractional-order transfer function

G(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
,

and approximation parameters ω = [10−4; 104], N = 5.
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Process models
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Consider the following generalizations of conventional process
models used in industrial control design.

(FO)FOPDT G(s) = K
1+Tse

−Ls G(s) = K
1+Tsα e

−Ls

(FO)IPDT G(s) = K
s e

−Ls G(s) = K
sα e

−Ls

(FO)FOIPDT G(s) = K
s(1+Ts)e

−Ls G(s) = K
s(1+Tsα)e

−Ls



Fractional-order controllers
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The fractional PIλDµ controller, where λ and µ denote the orders of the
integral and differential components, respectively, is given by

C(s) = Kp +Kis
−λ +Kd · sµ. (4)

The transfer function, corresponding to the fractional lead-lag
compensator of order α, has the following form:

CL(s) = K

(

1 + bs

1 + as

)α

. (5)

When α > 0 we have the fractional zero and pole frequencies ωz = 1/b,
ωh = 1/a and the transfer function in (5) corresponds to a fractional
lead compensator. For α < 0, a fractional lag compensator is obtained.



Basics of fractional control: fractional
control actions
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Let a basic fractional control action be defined as C(s) = K · sγ .
The control actions in the time domain for γ ∈ [−1, 1] with K = 1
under different input signals are given below.
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The modified Newton-Raphson method
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Consider the problem of finding a root ω∗ of a general nonlinear equation
f(ω) = 0 under the constraints ω > 0 and ω ∈ (ωb, ωh). To tackle the problem
one may employ the Newton-Raphson method which usually provides quadratic
convergence to the solution. The process of locating the root starts at an
initial guess ω0 and is given by the following iterative formula:

ωk+1 = ωk − f(ω)
(

f ′(ω)
)

−1

. (6)

Once a prescribed iteration limit ν is reached, or the necessary tolerance ǫ is
achieved under the condition f(ωk) < ǫ, the algorithm shall stop returning the
root ω∗. However, there is a drawback of this algorithm such that local
minima of f(ω) may lead to the change of sign of f ′(ω) and a violation of the
condition ωm > 0 at iteration step m = k + 1 may occur. To rectify this, the
locally obtained solution at step n may be replaced such that ωn = γcωk,
where γc 6= 1 is some predefined positive factor. If as a result of this
modification ωm no longer belongs to the interval (ωb, ωh), the process shall
fail returning ω∗ = 0 thereby indicating that it could not find a solution.



The modified Newton-Raphson method:
Algorithm summary
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procedure Newton(ω0, γc, ωb, ωh, f, f
′)

ǫ← Tolerance, ν ← MaxIterations
k ← 0; ωk ← ω0

while k < ν and f(ω) > ǫ do

ωk+1 ← ωk − f(ωk)(f
′(ωk))

−1

if ωk+1 < 0 then

ωk+1 ← γc · ωk

end if

if ωk+1 < ωb or ωk+1 > ωh then

return 0
end if

k ← k + 1
end while

return ωk

end procedure



The FO-FOPDT process model
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Recall, that the FO-FOPDT model is given by the following
transfer function

G(s) =
Ke−Ls

Tsα + 1
, (7)

where it is assumed that K > 0, T > 0, L > 0 and α ∈ (0, 2]. We
suppose that all of the parameters of this plant are known a priori.
They may be obtained, for instance, by employing an identification
procedure of a real life process. We begin the analysis by deriving
the equations to obtain the magnitude and phase angle of G(jω).
This is done by replacing s = jω in (7), employing (2), and
isolating the real and complex parts of the resulting expression as
z = a+ jb. Then, the magnitude A and phase angle ϕ are simply
computed as A =

√
a2 + b2, ϕ = tan−1(b/a).



The FO-FOPDT process model: Gain
crossover frequency and phase margin
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Next we derive open-loop characteristics of this plant. We begin by
obtaining the gain crossover frequency ωc, for which it holds

∣

∣G(jωc)
∣

∣ = 1.

Solving this equation yields

ωc =







√

K2 + cos2
(

απ
2

)

− 1− cos
(

απ
2

)

T







1/α

. (8)

The phase margin ϕm of the system can then be determined from

ϕm = π − arg
(

G(jωc)
)

+ 2πn, n > 0. (9)



The FO-FOPDT process model: Phase
crossover frequency and gain margin (1)
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It is more difficult to derive a formula to find the phase crossover
frequency, also referred to as the ultimate frequency of the system
ωu, since we need to solve a transcendental equation

−Lωu − tan−1

(

T sin
(

απ
2

)

ω−α
u + T cos

(

απ
2

)

)

= −π − 2πn, (10)

where n is determined by the requirement to obtain a minimum
gain margin 1/

∣

∣G(jωu)
∣

∣ closest to unity. While ωu is usually
obtained during relay autotuning, if it is not given, then the
following method may be used to compute it from the FFOPDT
model parameters. We first introduce a function

υ(ω) = arg
(

G(jω)
)

+ π + 2πn. (11)



The FO-FOPDT process model: Phase
crossover frequency and gain margin (2)
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We compute the derivative dυ(ω)/dω. After simplification we arrive at

υ′(ω) = −L−
αT sin

(

απ
2

)

ω
(

2T cos
(

απ
2

)

+ ω−α + T 2ωα

) . (12)

We may now use the modified Newton’s method to obtain ωu. Note, that to
locate the minimum stability margin we need to introduce a modification to
the search algorithm, whereby instead of terminating upon obtaining a solution
ω∗

u the gain margin 1/
∣

∣G(jω)
∣

∣ at this frequency is checked. If it is found to be
less than unity, the iterative process is repeated assigning ωg ← ω∗

u, ω0 ← ω∗

u

and n← n+ 1. This means that the search direction must be positive. The
gain margin are then determined by means of

Kc = min
(

∣

∣1− 1/G(jωg)
∣

∣ ,
∣

∣1− 1/G(jωu)
∣

∣

)

. (13)

Note, that the search interval ω ∈ (ωb, ωh) is related to the band-limited
Oustaloup approximation of a suitable fractional-order controller.



FO-FOPDT plant and FOPID controller:
Open-loop characteristics
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We can now derive the equations to compute the critical frequencies and
corresponding stability margins of the open-loop control system given by
Gol(jω) = C(jω)G(jω). A function ψpm(ω) for the phase margin is defined as

ψpm(ω) :=
∣

∣C(jω)
∣

∣ ·
∣

∣G(jω)
∣

∣− 1 (14)

To use the modified Newton-Raphson method to solve for ωc the equation
ψpm(ωc) = 0 we need to compute the derivative ψ′

pm(ω). In the same manner,
define the function ψgm(ω) for the gain margin

ψgm(ω) = arg
(

C(jω)
)

+ arg
(

G(jω)
)

+ π + 2πn (15)

and take the derivative ψ′

gm(ω). Then solve ψgm(ωu) = 0 for ωu. Finally, to
check whether phase is flat at ωc, ensuring the robustness to gain variations
specification, one may check whether the following relation holds

ψ′

gm(ωc) = 0. (16)

The equations to compute the sensitivity functions are derived in the same way.



Example: Computing the Gain Crossover
Frequency
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Suppose that a control system is given comprising a FFOPDT
plant in (7) with parameters

K = 10, L = 0.2, T = 8.5, α = 1.5 (17)

and a FOPID controller with parameters

Kp = 100, Ki = 2, λ = 0.75, Kd = 3, µ = 0.35. (18)

The task is to locate the gain crossover frequency. This can be
accomplished using the method described above.



Illustrative example: Newton iterations
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Illustrative example: Newton iterations
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Illustrative example: Newton iterations
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Proposed tuning methods: Fractional power
sweep
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Summary of the method:

1. Consider the parameters ωu and Kc of the FFOPDT model in (7);

2. Compute the parameter set θG = {Kp,Ki,Kd} of a conventional
PID-type controller;

3. Design a cost function J(·) based on desired system performance
according to frequency-domain specifications;

4. Do a sweep of parameters in the set θP = {λ, µ} within a predefined
region, computing the specifications using the provided equations;

5. Choose the best controller according to min J(·).

This method is justified because in case of a model (7) we have a

fractional plant to control.



Proposed tuning methods: Full controller
parameter optimization
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In this work, we do not consider expensive time-domain simulations
as basis for evaluating closed-loop system performance as opposed
to our earlier work. This comes at the expense of neglecting
nonlinear effects, such as actuator saturation. Only
frequency-domain specifications are used. Consider, for example,
the following weighted cost function

J = w1 |ϕm − ϕ̃m|+ w2

∣

∣

∣Gm − G̃m

∣

∣

∣

+ w3

∣

∣

∣

∣

(

d arg
(

C(jω)G(jω)
)

/dω
)

ω=ωc

∣

∣

∣

∣

. (19)

The parameters of the controller θ = {Kp,Ki,Kd, λ, µ} are then
computed using a suitable optimization method.



Illustrative example: FOPI controller design
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We consider here a FFOPDT model of a heating process. It is given by the
following FFOPDT transfer function:

G(s) =
66.16e−1.93s

12.72s0.5 + 1
. (20)

We shall now design a fractional-order controller to control this plant using the
method discussed above, first choosing three different sets of conventional PI
tuning rules. Namely, the classical Ziegler-Nichols method, the Cohen-Coon
method, and the AMIGO method.

Since we are sweeping a single parameter, the weights of the cost in (19) are

chosen such that w1 = 100/π, w2 = 0, w3 = 10. The range of the integrator

order sweep is selected as λ ∈ [0.5, 1.5] with a step size of ∆λ = 0.05. The

desired phase margin is ϕm = 75◦. In addition, any λ that yields a control

system with a gain margin such that Gm < 2.5 will be discarded.



Illustrative example: Tuning results
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Method Kp Ki λ∗ ϕm Gm

Ziegler-Nichols 0.4059 2.2021 — — —

AMIGO 0.0024 0.0036 0.80 73.9◦ 30.7 dB

Cohen-Coon 0.0129 0.0375 0.55 74.7◦ 12.0 dB

As it can be seen, it was not possible to stabilize the control
system in case of the Ziegler-Nichols tuning rules. However, in case
of the AMIGO and Cohen-Coon tuning an suboptimal λ subject to
given frequency-domain specifications, that is, the phase margin
specification, was found.



Illustrative example: Hardware-in-the-Loop
real-time experiment
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Illustrative example: AMIGO PI vs.
designed FOPI
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Conclusions and further perspectives
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• In this work we have presented a set of relations that enable
frequency-domain analysis of a control system comprising a FFOPDT
plant and a FOPID controller.

• Using the frequency-domain performance criteria it is possible to
design a suitable numerical optimization method to achieve
prescribed robustness requirements of the control system.

• Since the involved computations are relatively simple, they may be
implemented on embedded hardware platforms with limited
computational capabilities. Thereby the real-time controller design
issue is tackled.

• Future research should cover the optimization process with the goal
of utilizing the discussed methods in a fractional-order PID controller
with automatic tuning capabilities.



Future work: FOPID controller hardware
prototype
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FOMCON project: Fractional-order
Modeling and Control
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• Official website: http://fomcon.net/

• Toolbox for MATLAB available;

• An interdisciplinary project supported by the Estonian Doctoral
School in ICT and Estonian Science Foundation grant nr. 8738.

http://fomcon.net/
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