Self-excited nonlinear oscillator:
$$\begin{align*}
\dot{x}_1 &=x_2,\\
\dot{x}_2 &=-\omega_1^2\sin{y_1}-\varrho x_2 + k_p \arctan(k_c y_2),\\
\dot{x}_3 &=\omega_2 \cdot (x_1 - x_3), \\
y_1 &=x_1, \\
y_2 &=x_1-x_3,
\end{align*}$$
where $y(t)\in \mathbb{R}^2$ is the sensor output vector (to be transmitted over the communication channel), $\omega_1, \omega_2, \varrho, k_p, k_c$ are system parameters, $x=[x_1,x_2,x_3]^{\mathrm T}\in\mathbb{R}^3$ of the system state vector $x(t)$ based on the signals $y_1(t),y_2(t)$, transmitted over the communication channel.
The system has the form
$\dot{x}(t)=Ax(t)+\varphi(y(t)),$ $y(t)=Cx(t),$
where
$A=\begin{bmatrix}0 & 1 & 0 \\ 0 & -\varrho & 0 \\ \omega_2 & 0 & -\omega_2\end{bmatrix},$
$C = \begin{bmatrix}1, & 0, & 0\\ 1, & 0, & -1\end{bmatrix},$
$ \varphi(y) = \begin{bmatrix} 0\\ \omega_1^2 \sin{y_1} + k_p \arctan{(k_c y_2)} \\ 0 \end{bmatrix}.$