Time invariant stochastic bilinear system

Deprecation warning

This website is now archived. Please check out the new website for Centre for Intelligent Systems which includes both A-Lab Control Systems Research lab and Re:creation XR lab.

However, the Dynamic System Model Database can still be used and may be updated in the future.

Block-triangular MIMO system 1

Model description: 

$$\Sigma _{S_{1}}: \cases{ \begin{align*} \dot{x}_{1,1} &=f_{1,1}(\bar {x}_{1,1},\bar {x}_{2,1})+g_{1,1}(\bar {x}_{1,1},\bar{x}_{2,1})x_{1,2} \\ \dot{x}_{1,2} &=f_{1,2}(X)+g_{1,2}(\bar{x}_{1,1},\bar{x}_{2,1})u_{1} \\ \dot{x}_{2,1} &=f_{2,1}(\bar {x}_{1,1},\bar {x}_{2,1})+g_{2,1}(\bar{x}_{1,1},\bar{x}_{2,1})x_{2,2} \\ \dot{x}_{2,2} &=f_{2,2}(X,u_{1})+g_{2,2}(\bar{x}_{1,1},\bar {x} _{2,1})u_{2} \\ y_{j} &=x_{j,1}, \quad j=1,2, \end{align*}}$$

where $X = [\bar{x}_{1,2}^{\mathrm T}, \bar{x}_{2,2}^{\mathrm T}]^{\mathrm T}$ with $\bar{x}_{j,2}=[x_{j,1},x_{j,2}]^{\mathrm T},j=1,2$.

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleAdaptive neural control of uncertain MIMO nonlinear systems
Publication TypeJournal Article
Year of Publication2004
AuthorsGe, Shuzhi Sam, and Wang Cong
JournalIEEE Transactions on Neural Networks
Volume15
Issue3
Start Page674
Pagination674-692
Date Published05/2004
ISSN1045-9227
Accession Number8012935
Keywordsadaptive control, closed loop systems, control system synthesis, MIMO systems, neurocontrollers, nonlinear control systems
AbstractIn this paper, adaptive neural control schemes are proposed for two classes of uncertain multi-input/multi-output (MIMO) nonlinear systems in block-triangular forms. The MIMO systems consist of interconnected subsystems, with couplings in the forms of unknown nonlinearities and/or parametric uncertainties in the input matrices, as well as in the system interconnections without any bounding restrictions. Using the block-triangular structure properties, the stability analyses of the closed-loop MIMO systems are shown in a nested iterative manner for all the states. By exploiting the special properties of the affine terms of the two classes of MIMO systems, the developed neural control schemes avoid the controller singularity problem completely without using projection algorithms. Semiglobal uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop of MIMO nonlinear systems is achieved. The outputs of the systems are proven to converge to a small neighborhood of the desired trajectories. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters. The proposed schemes offer systematic design procedures for the control of the two classes of uncertain MIMO nonlinear systems. Simulation results are presented to show the effectiveness of the approach.
DOI10.1109/TNN.2004.826130

A nonlinear system

Model description: 

Consider a nonlinear system

$$\begin{align*} x_{1}(t+1) &=x_{1}(t)-x_{1}(t)x_{2}(t)+(5+x_{1}(t))u(t) \\ x_{2}(t+1) &=-x_{1}(t)-0.5x_{2}(t)+2x_{1}(t)u(t) \end{align*}$$

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleStabilization of discrete-time nonlinear control systems - Multiple fuzzy Lyapunov function approach
Publication TypeConference Paper
Year of Publication2009
AuthorsKau, Shih-Wei, Huang Xin-Yuan, Shiu Sheng-Yu, and Fang Chun-Hsiung
Conference NameInternational Conference on Information and Automation, 2009. ICIA '09.
Date Published06/2009
PublisherIEEE
Conference LocationZhuhai, Macau
ISBN Number978-1-4244-3607-1
Accession Number10837484
Keywordsdiscrete time systems, fuzzy control, linear matrix inequalities, Lyapunov methods, nonlinear control systems, stability
AbstractThis paper deals with the stabilization problem for discrete-time nonlinear systems that are represented by the Takagi - Sugeno fuzzy model. By the multiple fuzzy Lyapunov function and the three-index algebraic combination technique, a new stabilization condition is developed. The condition is expressed in the form of linear matrix inequalities (LMIs) and proved to be less conservative than existing results in the literature. Finally, a truck-trailer system is given to illustrate the novelty of the proposed approach.
DOI10.1109/ICINFA.2009.5204890

T-S fuzzy model

Model description: 

Consider a T-S fuzzy model

Plant Rule $i$: If $x_1(t)$ is $F_1^1(x_1(t))$

Then $x(t+1) = A_ix(t)+B_iu(t),$

where

$\begin{align*} A_1 &=\left[\matrix{-a & 2\cr -0.1 & b}\right], A_2=\left[\matrix{-a & 2\cr-0.1 & b }\right], A_3=\left[\matrix{-0.9 & 0.5\cr -0.1 & -1.7}\right] \\ B_1 &=\left[\matrix{b\cr 4}\right], B_2=\left[\matrix{b\cr 4.8}\right], B_3=\left[\matrix{3\cr 0.1}\right]. \end{align*}$

The parameters $a$ and $b$ are adjusted to compare the relaxation of stabilization conditions.

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleStabilization of discrete-time nonlinear control systems - Multiple fuzzy Lyapunov function approach
Publication TypeConference Paper
Year of Publication2009
AuthorsKau, Shih-Wei, Huang Xin-Yuan, Shiu Sheng-Yu, and Fang Chun-Hsiung
Conference NameInternational Conference on Information and Automation, 2009. ICIA '09.
Date Published06/2009
PublisherIEEE
Conference LocationZhuhai, Macau
ISBN Number978-1-4244-3607-1
Accession Number10837484
Keywordsdiscrete time systems, fuzzy control, linear matrix inequalities, Lyapunov methods, nonlinear control systems, stability
AbstractThis paper deals with the stabilization problem for discrete-time nonlinear systems that are represented by the Takagi - Sugeno fuzzy model. By the multiple fuzzy Lyapunov function and the three-index algebraic combination technique, a new stabilization condition is developed. The condition is expressed in the form of linear matrix inequalities (LMIs) and proved to be less conservative than existing results in the literature. Finally, a truck-trailer system is given to illustrate the novelty of the proposed approach.
DOI10.1109/ICINFA.2009.5204890

Time varying stochastic bilinear system with nonlinear feedback

Model description: 

Consider the following time varying stochastic bilinear system with nonlinear feedback.

$$\begin{align*} \begin{bmatrix} x_1(t+1) \\ x_2(t+1) \end{bmatrix} &= \left\{\begin{bmatrix}0.1 & 0.2 \\ 0.5 & -0.3\end{bmatrix} + \begin{bmatrix}0.36 & -0.3 \\ 0.2 & 0.42\end{bmatrix}\omega(t) \right\}\begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix} \\ &+\begin{bmatrix}0.1 & 0.9 \\ 1.5 & 1.2\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}u(t) + \begin{bmatrix}-0.3t^2\exp{(-t)} \\ 0.4t\exp{(-t)}\end{bmatrix}u(t), \\ \begin{bmatrix}y_1(t) \\ y_2(t)\end{bmatrix} &= \begin{bmatrix} 0.7\sin{t} & -0.9 \\ 0.8 & -0.6\cos{t}\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}, \end{align*}$$

where

$u(t)=0.2\sin{(y_1(t) + y_2(t))} + 0.3[y_1(t)+y_2(t)].$

Type: 

Form: 

Time domain: 

Linearity: 

Publication details: 

TitleRandom parameter discrete bilinear system stability
Publication TypeConference Paper
Year of Publication1989
AuthorsYang, Xueshan, Mohler R.R., and Chen Lung-Kee
Conference NameProceedings of the 28th IEEE Conference on Decision and Control, 1989.
Date Published12/1989
PublisherIEEE
Conference LocationTampa, FL
Accession Number3685072
Keywordsdiscrete systems, feedback, linear systems, noise, nonlinear systems, stability criteria, stochastic systems
AbstractStability of discrete, time-varying, stochastic, bilinear systems is studied. Bilinear systems with output feedback are included. Mean-square stability conditions are derived for stochastic models without the assumption of stationarity for the random noise. The feedback function includes a larger class of functions than the class of linear functions or functions satisfying the Lipschitz condition. The sufficient stabilizing conditions depend only on the coefficient matrices of the bilinear system
DOI10.1109/CDC.1989.70323

Time invariant stochastic bilinear system

Model description: 

Consider the following time invariant stochastic bilinear system:

$$\begin{align*} \begin{bmatrix}x_1(t+1)\\x_2(t+1)\end{bmatrix} &= \left\{ \begin{bmatrix}0.2 & 0.4 \\ 0.5 & -0.3\end{bmatrix} + \begin{bmatrix}0.3 & 0.2 \\ -0.3 & 0.4\end{bmatrix}\omega(t) \right\} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}+ \begin{bmatrix}2 & 5 \\ 3 & 9\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}u(t) + \begin{bmatrix}-0.3 \\ 0.4\end{bmatrix}u(t), \\ \begin{bmatrix}y_1(t) \\ y_2(t)\end{bmatrix}& = \begin{bmatrix} 0.7 & 0.8 \\ -0.9 & -0.6\end{bmatrix} \begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}, \end{align*}$$

where

$u(t)=0.24[y_1(t) + y_2(t)] + 0.32[y_1(t-1) + y_2(t-1)]$

and $\omega(t)$ is a white noise with zero mean and variance 0.2.

Type: 

Form: 

Model order: 

2

Time domain: 

Linearity: 

Publication details: 

TitleRandom parameter discrete bilinear system stability
Publication TypeConference Paper
Year of Publication1989
AuthorsYang, Xueshan, Mohler R.R., and Chen Lung-Kee
Conference NameProceedings of the 28th IEEE Conference on Decision and Control, 1989.
Date Published12/1989
PublisherIEEE
Conference LocationTampa, FL
Accession Number3685072
Keywordsdiscrete systems, feedback, linear systems, noise, nonlinear systems, stability criteria, stochastic systems
AbstractStability of discrete, time-varying, stochastic, bilinear systems is studied. Bilinear systems with output feedback are included. Mean-square stability conditions are derived for stochastic models without the assumption of stationarity for the random noise. The feedback function includes a larger class of functions than the class of linear functions or functions satisfying the Lipschitz condition. The sufficient stabilizing conditions depend only on the coefficient matrices of the bilinear system
DOI10.1109/CDC.1989.70323

Pages