

Control systems

- Regulatory control:
 - Automatic
 - Field devices and sensors
 - Mostly SISO systems
- Supervisory control:
 - Heavy human interaction
 - PLCs, Data acquisition systems, HMI
 - Information is essential

Normal or abnormal behavior?

Normal or abnormal behavior?

- Information
 - Quality
 - Quantity
- Process knowledge
 - Training
 - Experience

Process monitoring

- Techniques or algorithms that identify and detect changes in the critical variables of the process
- Early identification of process abnormal behavior

Model-based:

- Provide very presice results
- Requires understanding of physicochemical relations in the process
- If the process changes the model is useless

Data-based:

- Does not requiere process knowledge
- Results can depend on the quality of the information
- Easy to adapt to new processes
- Requires larges amounts of data

a)

c)

Process monitoring: model based techniques

- a) First principles model
- b) Expert system (decision trees)
- c) Causal model

Process monitoring: Data based techniques

Statistical

- Most simple type of monitoring
- Individual thresholds determined for each variable
- Correlation between different variables can considered to create more complex systems

Artificial intelitence

- Automated reasoning systems
- Use data to make inferences about the process
- Captures diverce process behavior

Data preprocessing

- Industrial data is never suitable due to:
 - Noise
 - Uncertainties
 - Disturbances
- Data preparation requires:
 - Selection
 - Varied operation conditions
- Application determine the procedure

Data preprocessing general recomendations

- Remove Outliers
- Handle missing values
- Resampling
- Scaling
- Filtering
- Compression

Process monitoring methods: Principal component analysis (PCA)

- Statistical procedure
- Describes the variation inside the data
- Reduce complex data sets to a lower dimension
- Symplified dynamics of the system

PCA steps

- 1. Normalize the original data set.
- 2. Compute the covariance matrix
- 3. Compute the eigenvalues and eigenvectors.
- 4. Determine the principal components.
- 5. Calculate score matrix
- 6. Determine the monitoring indexes(square predition error or other statistics)

PCA: CSTR example

Measurements:

- Coolant Temperature
- Reactant mixture temperature
- Reactant A concentration in feed
- Reactant A concentration in solvent
- Solvent flow rate
- Feed flow rate
- Coolant flow rate
- Outlet concentration
- Outlet temperature

Data

Covariance matrix and decomposition

Covariance
$$C = \frac{1}{N-1}X^TX$$

matrix C

 $C = V \Lambda V^{T}$

The decomposition can be done by solving_

$$det(C - \lambda I) = 0$$
$$Ce_i = \lambda_i e_i$$

Determine principal components

• The principal components are the eigenvectors with the largest eigenvalues which correspond to the dimensions that have the strongest correlation in the dataset.

Lambda	Variance %	VarianceTotal
2,07	23	23
1,41	16	39
1,31	15	53
0,99	11	64
0,95	11	75
0,83	9	84
0,79	9	93
0,38	4	97
0,26	3	100

Calculate score matrix (PCA model)

A score-matrix T can be calculated:

$$T = XV_k$$

- V_k is a transformation matrix containing the the eigenvectors corresponding to the k largest eigenvalues. k (principal components)
- T is a "compressed" version of X

Monitoring indexes

- SPE variation outside the model, distance off the model plane
- Hotelling T² variation inside the model,
 distance from the origin along the model plane

Monitoring indexes

$$T_{lim}^2 = \frac{K(N-1)}{N-K} F(K,N-K,\alpha)$$

where the $F(K,N-K,\alpha)$ corresponds to the probability point on the F-distribution with $(K,N-K,\alpha)$

K) degrees of freedom and confidence level α . N = # of data samples, K = # of PCs

$$SPE_{\alpha} = \Theta_{1} \left[\frac{c_{\alpha}h_{0}\sqrt{2\Theta_{2}}}{\Theta_{1}} + 1 + \frac{\Theta_{2}h_{0}(h_{0}-1)}{\Theta_{1}^{2}} \right]^{\frac{1}{h_{0}}}$$

$$\Theta_{i} = \sum_{j=k+1}^{m} \lambda_{j}^{i} \quad h_{0} = 1 - \frac{2\Theta_{1}\Theta_{3}}{3\Theta_{2}^{2}}$$

where m= number of original variables, k=number of principal components in the model, c_{α} = upper limit from normal distribution with conf. level α

Monitor new data

Scale the new data set with training data scaling values

$$\widetilde{\mathbf{X}}_{\text{new}} = \frac{\left(\mathbf{X}_{\text{new}} - \overline{\mathbf{X}}_{\text{train}}\right)}{\mathbf{\sigma}_{\text{train}}}$$

Compute PCA transformation (i.e. scores for all the chosen principal components) using V_k.

$$t = V_k^T \widetilde{x}_{new}$$

Compare Hottelling and SPE values

T²: Measures systematic variations of the process. For individual observation:

$$\mathsf{T}^2(\mathsf{x}_{\mathsf{new}}) = \widetilde{\mathsf{x}}_{\mathsf{new}}^\mathsf{T} \mathsf{V}_\mathsf{k} \mathsf{\Lambda}_\mathsf{K}^{\mathsf{-1}} \mathsf{V}_\mathsf{k}^\mathsf{T} \widetilde{\mathsf{x}}_{\mathsf{new}} = \mathsf{t}^\mathsf{T} \mathsf{\Lambda}_\mathsf{K}^{\mathsf{-1}} \mathsf{t}$$

SPE: Measures the random variations of the process

$$SPE = r^{T}r \text{ where } r = (I - V_k V_k^{T})\widetilde{x}_{new}$$

