Thermal processes

Autoclave for food sterilization under pressure consists of 0.8 t potato and 0.35 t water. Autoclave construction weight is 1.2 t. The autoclave is heated by the steam which consumption is adjustable (signal 0-100%) between $0...1300 \ kg/h$.

Specific heat capacities: of water 4.18 and iron 0.44 $kJ/(kg \cdot ^{\circ}C)$, water heat of evaporation is 2256 kJ/kg, potato and water properties are sim-

With 10% of steam consumption autoclave reaches the temperature of 97 °C (if temperature of environment $T_e=+22$ °C).

- 1. Provide an equation describing thermal process.
- 2. What is the time constant T_s of the autoclave?
- 3. Does the autoclave temperature can rise faster than 7.5 $^{\circ}C/min$?
- 4. Steam inflow was closed at 95 $^{\circ}C$
 - How fast temperature decreases?
 - What is the temperature of autoclave in 1 h and 30 min?

Comments

iron + water + potato

Q - quantity of heat

 $F = \mathrm{d}Q/\mathrm{d}t$ - heat flow T - autoclave temperature

 T_e - environmental temperature

 $dQ/dt = F_{in} - F_{out}$ - thermal process in autoclave

1. Autoclave consists of 3 materials (iron, water, potato) with a temperature Tquantity of heat in the autoclave is

$$Q = Q_1 + Q_2 + Q_3 = (c_1 m_1 + c_2 m_2 + c_3 m_3)T = \sum_{i=1}^{n} c_i m_i \cdot T$$

process equation

$$d(\sum c_i m_i \cdot T)/dt = P - K(T - T_e),$$

where P - power given by steam, $K(T-T_e)$ - cooling into environment steam temperature is 110 °C, autoclave temperature rate is 22...97 °C

2. Steam inflow power P does not depend on the temperature T of the autoclave

Why is that? Cooling process depends on the temperature T: $-K(T-T_e)$

During steam condensation all obtained heat is transferred into circulating water condensate Let the circulation flow is 10 l/s, how much changes the temperature ΔT with the maximum steam consumption?

$$F_{in} = P = c_e q_s = c_w q_w \Delta T,$$

where P = const until $T < T_{steam}$

What happens if autoclave temperature is $> 100 \, {}^{\circ}C$ (or $\approx T_{steam}$)?

3. We can use another variable "higher temperature" $\theta = T - T_e$

$$\sum c_i m_i \cdot d\theta/dt = P - K \cdot \theta,$$

temperature rise speed is $d\theta/dt = \dots (\theta = 0)$

4. steady-state $P = K(T - T_e) = K \cdot \theta \rightarrow \text{gain } K = \dots \ kW/K$

5. cooling $(P = 0) \sum c_i m_i d\theta/dt = -K \cdot \theta$ and the process

$$\theta(t) = \theta_0 \cdot e^{t/T}$$