2015 Practice 2

Figure 1: ARMSTRONG 4380 water pump

Pump

With ARMSTRONG 4380 water pump the system pressure is kept 70 kPa where water consumption varies between (10 .. 50) L / s. [curved arrow in the figure is not included into the task]

Pump speed $n=(0-1500)\ r/min$ controlled by a linear frequency converter with control signal $u=0\ ...100\%.$

Determine the control signal u range and a block (frequency converter + pump) gain K value and its range.

Practice 2 2015

Comments

1 Industrial pumps

Most liquids are moved by industrial pumps. Pumping costs consist of

- 5% of capital expenditures,
- 10-15% of exploitation,
- 85% of the energy cost (≈ 100 x more than the price!)

Industrial pumps use 20% of the power generated (paper, chemical and petrochemical industries, up to 30 ... 50%).

Pumps with higher efficiency (with engines) is 60-80%, significantly affects the cost.

View:

http://www.PumpLearning.org

http://www.pumps.org

http://www.pumpsystemsmatter.org

http://www.pump-zone.com

http://www.engineeringtoolbox.com

Where the energy goes during the pumping?

1. Potential energy

```
pressurized liquid P, rises on the height H work A_p=mg\cdot H=V\rho gH=VP, where V - volume, P - pressure, Q-consumption Power N_p=A_p/t=QP=4000~W
```

2. Kinetic energy

Energy
$$A_k = mv^2/2$$
, where v - fluid velocity (2 m/s)
Power $N_k = qv^2/2 = 20$ W during the pumping pot.energy \rightarrow kin. energy!

3. Losses (due to change in flow rate and direction) $\sim 10\%.$

2015 Practice 2

2 Pump characteristics

• Ideal pump $P = P_m$

• fluid flow $\Delta p \sim Q^2$, $\Delta p = k \cdot Q^2$ turbulent

ullet real pump -centrifugal pump- internal resistance: Opening $S(m^2)$ IMPELLER

3

 $P=P_m-\Delta p$; F(P,Q)=0; analogy with an electric battery, but nonlinear

Practice 2 2015

$$P = P_m - k \cdot Q^2 \tag{1}$$

maximum flow Q_m

$$P = P_m[1 - (Q/Q_m)^2] (2)$$

When the pump develops maximum power?

power $N=P\cdot Q=(P_mm-k\cdot Q^2)Q$ max N? $\mathrm{d}N/\mathrm{d}Q=0\to (P_z,Q_z)$

The maximum capacity of the pump at operating point $P_z = 2/3P_m$, $Q_z = 1/\sqrt{3} \cdot Q_m$ pump (engine!) has a limited capacity

$$P = 3/2 \cdot P_z [1 - 1/3(Q/Q_Z)^2] \tag{3}$$

Is it a max performance too?

Pump curve F(P,Q) = 0 is represented by two parameters

• real pump + external resistance (load)

Operating point (P,Q), the pump characteristic is designated by the load and changes due to the load change.

Variable rotational speed $n, P_m \sim n^2$ parameters:

$$F(P, Q, N) = 0, \quad P = k_1 \cdot n^2 - k_2 \cdot Q^2 \qquad (k_1, k_2)$$

$$P = \dots (n/n_o)^2 \qquad (\dots n_o) \qquad (4)$$

2015 Practice 2

3 Calculations

Calculate coefficients k_1 and k_2 from the equation $P(Q, n) = k_1 \cdot n^2 - k_2 \cdot Q^2$ with rotation speed $n = 1450 \ r/min$

Do these parameters describe other pump speeds?

- 1. calculate in Excel the pump equation P(Q, n) values as a function of $Q = 0, 10, 20, \dots, 70L/s$ (line), with the parameters $n = 1450, 1394, \dots$ (Column)
- 2. provide data by figure; place one on the other: task's and Excel figures, assess the match, adjust the parameters k_1, k_2 .

Pressure P control $P=P_o$ by rotation speed n due to consumption Q changes. $n=F_1(P_o,Q)$ n-range $n_{\max}\dots n_{\min}$ gain $K_p=\mathrm{d}P/\mathrm{d}n$