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1 Process models

the desire to describe reality

Model of the process, model simpli�cation, identi�cation.

model process
reality	is	complex

• Replaces the original;

• Maintains the essential characteristics, describes the process;

• One process can be described by the several models.

Model is used on purpose:

- Similarity of appearance - material model;

- Understanding of the process, predicting of the behavior to change the process (properties)

in desired direction

e�ciency, safety, control, etc.

How to develop a model?

• Experimental data / empirical model / so called "Black box"

• Computationally/ functional model / where

based on the components and the laws of nature: di�erential equations, state-space repre-

sentation, and transfer function

• Combined method, so called "gray box".

Type of the model will depend on assumptions initially made to de�ne the system. In general,

the more assumptions we make, the simpler the structure of the model will be[3].

How to check a model?

The model is always approximate, the model must be

• "Accurate enough" to describe the ;
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• "Simple" to calculate.

Model should be speci�ed or simpli�ed if needed.

The model is speci�ed if its features can be changed in the area that interests us (closed system

behavior).

The model is simpli�ed if its parameters are insigni�cant.

Our goal: We are looking for the models that describe what is important for the process in a

closed system. These models allow you to choose the controller, the descriptive reality as similar

to the behavior of a closed system, will provide answers to key questions:

When the system is stable?

What are the characteristics of the system?

Example 1 Heater

Model of the system ← models of the components

Actuator Heater Sensor

W (s) =
K1

1 + T1 · s
· K2

(1 + T2 · s)(1 + T3 · s)
· K3

1 + T4 · s

Im

Re

More oscillatory

Faster response

Inverese response
zeros

Unstable poles
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p1p2p3p4

jω

σ
Time constants: T1, T2, T3, T4

(poles p = −1/T )

Do we need so accurate (complex) model for the control?

Simpli�cation: the model reduction

• State-space representation A,B,C,D non-critical states?

• Transfer function W (s) not important poles?

1. Considering the dominant pole p1 (min |p| −maxT ),

Do not consider others, First Order model.

Too simple to describe the system with required accuracy, can be used to describe the

components.

2. Take into account two important poles p1, p2

Do not consider others, Second Order model.

more accurate model, not exact, there are better models.

In real word where are not purely �rst or second order systems, there are additional precesses

which impacts should be considered.

3. Several distant poles p1, p2, . . . with time constants T1, T2, . . .

Time constants are summarized and provided as delay W (s) = e−s
∑
Ti

Important dynamical feature of the object provided as time constant, insigni�cant - as delays

(models FOPDT, SOPDT)

1.1 FOPDT model

First Order Plus Dead Time

W (s) =
K

1 + T · s
e−τ ·s (1)

where

Kp - process gain: the ultimate value of the response (new steady-state) for a unit step change

in the input.

T - Time constant: measure of time needed for the process to adjust to a change in the input.

τ - Delay: the time at which output of the system begins to change minus the time at which the

input step change was made [3].

• Three parameters: K,T, τ simple but moderately complex.
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• Describes the dynamics of the system with su�cient accuracy

controllers work on this basis.

• Easily obtained with simpli�cation of the complex models;

• Easy to identify.

The problem: if the highest insigni�cant time constant (T2) is close to the important time

constant (T1)

Example 2 Approximation with FOPDT

1

1 + Tps
≈ e−Tps; (2)

1− Tzs ≈ e−Tzs (3)

If important T1 is the largest time constant T1 > T2 > T3, the third order system can be approxi-

mated as follows:

Kp

(1 + T1s)(1 + T2s)(1 + T3s)
≈ Kp

1 + T1s
· 1

1 + T2s
· 1

1 + T3s

≈ Kp

(1 + T1s)
· e−T2s · e−T3s

=
Kp

(1 + T1s)
e−(T2+T3)s

Example 3 Skogestad method [6]

The largest neglected time constant should be divided between the smallest retained time constant

and the time delay:

for the �rst order model:

T10 = T1 + T2/2, τ = τ0 + T2/2 +
∑
i≥3

Tpi +
∑
j

Tnj (4)

for the second order model:

T10 = T1, T20 = T2 + T3/2, τ = τ0 + T3/2 +
∑
i≥4

Tpi +
∑
j

Tnj
(5)

if we have positive numerator against neighboring denominator

1 + Tzs

1 + Tps
≈



Tz/Tp for Tz ≥ Tp ≥ τ

Tz/τ for Tz ≥ τ ≥ Tp
1 for τ ≥ Tz ≥ Tp
Tz/Tp for Tp ≥ Tz ≥ 5τ
T̃p/Tp

T̃p−Tz
where T̃p = min(Tp, 5τ) ≥ Tz

(6)
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Kp

(1 + T1s)(1 + T2s)(1 + T3s)(1 + T4s)
≈ Kp · e−(T3/2+T4)s

(1 + T1s)[1 + (T2 + T3/2)s]

1.2 SOPDT model

Second Order Plus Dead Time

W (s) =
Ke−τ ·s

(1 + T1 · s)(1 + T2 · s)
(7)

• gain, two time constants, delay

• used if T2 > τ

• setting of the parameters is not an easy task!

1.3 Empirical model: identi�cation

Theoretical models, based on chemistry and physics of the process, may not be practical for

complex processes if model requires large number of equations with a lot of process parameters

and unknown parameters. An alternative approach is to develop an empirical model directly from

experimental data. In general, empirical dynamic models are simpler than theoretical ones [5].

If we would like to tune the control loop, it is more likely you will design a model by performing

a plant test.

Process model is based on experimental data:

Test, observation of the I/O signals - "black box"

X Planning

Model objectives: that is, how will be used, who will be the user?

A priori information: stable, static;

Operating point, the input (step response, value), what to measure;

How much time it takes, safety requirements.

X Test

Presence of the non-linearity.

Are other inputs stable?

X Structure of the model: what is known?

Aim is to obtain model with acceptable accuracy.
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What is needed to control the process.

CRI - Control Relevant Identi�cation.

X Parameters estimation

Graphical, statistical (regression analysis).

X Evaluation of the model

How accurately the model describes the data?

X Veri�cation

Additional check with other data.

Models Types

model structure
test type

model parameters
step impulse 2 impulses PRBS

1. order X X Kp, T

2. order X Kp, T/ω, β

FOPDT X Kp, T, τ

SOPDT - Kp, T1, T2, τ

ARX - X

Step response or process reaction curve

• Often used, easy to understand;

• Does not contain information about the high-frequency behavior;

• Does not have theoretical advantages;

• Works well with a noise; if signal/noise ratio <5 it is hard to found the derivative.

• Not perfect step change in the input causes the error

rise time ts = 0.1 · τ of the input signal causes the measurement error of a delay τ up to

20%.

The input must be changed enough to observe a change in the output variable (it must increase

above the noise level), but not so much that the output change is too great (economical reasoning)

[1].

Simple identi�cation tests provide simple process models, which can be used to design the control

system with limited features. Sometimes that is enough.
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Other methods

• Two impulses

• Pseudo-Random Binary Sequence (PRBS)

t

Ti

Ti

-∆u

+∆u

(a) Two impulses

t

-∆u

+∆u

(b) PRBS

Figure 1: Test signals

1.4 Experimental estimation of the FOPDT model parameters

step response of a static object

u = 1(t)·Δu y(t)
input step change ∆u at time instance 0

Register a reaction curve in response to a step change in the input from one steady-state value

to another y1 → y2 (see Fig. 2)

The process gain Kp

Kp =
∆y

∆u
=
y(t→∞)

u(t→∞)
(8)

Maximum Slope Method

Locate the in�ection point of the process reaction curve and draw a tangent (puutuja / êàñàòåëüíàÿ)

along it. The intersection of the tangent line and the time axis y1 corresponds to the estimate of

time delay τ = [0 A]. The intersection with the �nal steady-state line helps to calculate the time

constant T = [A B].

K.Vassiljeva 7 2015



Lecture 5 ISS0080 Automation and Process Control

0

A
C

B

t

Δy
0.63Δy

T

y1

y2

y(t)

τ

Figure 2: Process reaction curve

Numerical Application of 63% Method

Time delay can be found like in previous method: τ = [0 A]. Time constant T can be obtained

by looking at the 63% response time. Calculate the 0.63 ·∆y of the output signal. Mark the time

instance then output value is equal to it, so T = [A C]. More accurate technique.

Two-Point Method

Observes the output relative change y′(0 . . . 100%)

y′ = (y − y1)/(y2 − y1). Here the time required for the process output to make 28.3% and 63.2%

of the long-term change is denoted by t28.3% and t63.2%, respectively. The time constant and time

delay can be estimated the following way

T = 1.5(t63.2% − t28.3%) (9)

τ = t63.2% − T (10)

In case of the 20% and 80% levels

T = 0.721(t80% − t20%) (11)

τ = 1.161t20% − 0.161t80% (12)

The primary limitation to using step responses to identify FOPDT transfer functions is the

amount of time required to assure that the process is approaching a new steady state. That is,
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0
t

Δy

y1

y2

y(t)

t1 t2

1

Figure 3: Two-Point Method

the major limit is the time required to determine the gain of the process. For large time constant

processes it is often desirable to use a simpler model that does not require a long step test time [1].
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