Process examples

1 Level Control

Is the purpose to gather material?

- 2. smoothing the disturbances of the continuous processes (averaging);
- 3. separation, gathering [oil, mud, air, gas, steam] separator, deaerator

1.1 Description of the process

space: container, inventory, tank, vessel

Volume V; Flow: q, Q, F;

Units: [amount of substance /time units]

 $m^3/h, L/min, kg/s, \dots$ Amount: $V = \int q \cdot dt$

K.Vassiljeva 1 2015

law of conservation of mass \rightarrow volume conservation, $(M = \rho \cdot V, \rho = const)$

$$\Delta V = V_{in} - V_{out}$$

$$\frac{dV}{dt} = q_{in} - q_{out}, V = \int (q_{in} - q_{out}) \cdot dt$$

in case of vertical cylindrical tank

We as
$$V = A \cdot h$$

$$h = \frac{1}{A} \int (q_{in} - q_{out}) \cdot dt$$
integrator $W(s) = K/s$

Normalized input/output values $h' = \frac{h}{h_o} \cdot 100\%$, $q' = \frac{q}{q_o} \cdot 100\%$

1.2 Liquids

- steady state (statics)
 - liquid conserves the volume V=const
 - pressure of liquids $dP/dh = -\rho g$, $P = \rho gh$
 - force to the area A is F = PA
- laminar or turbulent flow

force is caused by a change in flow the direction

$$F = m \cdot a = m \cdot \Delta V / \Delta t$$
 (pulse)

 \bullet Hydraulic shot

On what do the inflow and outflow depend?

1. pumps

 $q_{in}, q_{out} \neq f(h), q \approx const$

2. outflow depends on pressure (level), free outflow

Can be

 \checkmark solved numerically,

 \checkmark linearized at operating point (q_0, h_0)

$$F(x_0 + \Delta x) \approx F(x_0) + \frac{\mathrm{d}F}{\mathrm{d}x} \Delta x + \dots$$
 (1)

$$W(s) = \frac{\sqrt{h_0}/K_1}{1 + \left(\frac{A \cdot \sqrt{h_0}}{K_1}\right) \cdot s} = \frac{K}{1 + T \cdot s}$$

$$\tag{2}$$

Values of the gain K and time constant T depend on operation point h_0 !

2 Level control + thermal process

The quantity of the heated liquid $V = A \cdot h$ and temperature T are changing

2015 4 K.Vassiljeva

This process in nonlinear, linearize at operating point h_0, T_0

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{c} h \\ T \end{array} \right) = \left(\begin{array}{c} * & * \\ * & * \end{array} \right) \cdot \left(\begin{array}{c} h \\ T \end{array} \right) + \left(\begin{array}{c} * & * & * \\ * & * & * \end{array} \right) \cdot \left(\begin{array}{c} P \\ q_{in} \\ q_{out} \end{array} \right)$$

2.1 Notes

• the relationship between level and volume depends on the shape of the container

spherical shape:
$$V = \pi \cdot \frac{h^2 \cdot (3r - h)}{3}$$

cylindrical:
$$V = \pi D^2/4 \cdot h$$

• waves and oscillations in the tank [2]

the mass movement (pot. and kin. energy) develops when some force creates a difference in levels between two points. Difference accelerates a flow. on reaching wall much momentum remains, so flow is reversed and action repeated.

the period of the wave

resonance: $T = 2\pi \sqrt{\frac{L}{2g}}$,

where L is the distance of opposite walls.

• flowing from the several tanks (related vessels)

 $A_i \frac{\mathrm{d}h_i}{\mathrm{d}t} = Q_{in} - Q_{out}$ $Q_{ik} = F(h_i, h_k)$

- combustible, explosive, toxic, fragrant liquids
- pressurized containers
- overflow causes pollution

2.2 Heating and ventilation systems

HVAC - Heating Ventilating and Air Conditioning 90% of the time a person is indoors!

Objective: The desired temperature and air quality min energy expenses

3 Mixing processes

Substance (X) is included in the total quantity of the substance.

concentration
$$c = \frac{m_x}{\sum m} \left[\frac{kg, L, mole}{kg, m^3} \right]$$
 $c = (0...1)$ or $(0\%...100\%)$ $c \ge 0$ a non-negative!

mass balance: conservation of mass $m_{in} - m_{out} = m_{accumulation}$

$$m = \rho \cdot V, \ \rho = const \quad \rightarrow \quad \sum V_{x_{in}} - \sum V_{x_{out}} \approx V_{x_{accum}}.$$

two inflows q_1 , q_2 outflow: Over-flow (V = const) $q = q_1 + q_2$ regardless of the inflows

$$V = q \cdot \Delta t, \ V_x = c \cdot V$$

$$V_{x_{in}} - V_{x_{out}} = \Delta V_x$$

$$c_1 \cdot q_1 \cdot \Delta t + c_2 \cdot q_2 \cdot \Delta t - c \cdot (q_1 + q_2) \cdot \Delta t = \Delta c \cdot V$$

$$V \cdot dc/dt + c \cdot (q_1 + q_2) = c_1 \cdot q_1 + c_2 \cdot q_2$$
(3)

Steady state: $c = \dots$,

Transfers: exponential time constant $\tau = v/(q_1 + q_2)$

Gain: Input $q_2, c_2 = 0$

4 Mechanical processes

(solid movement)

- 1. Mass point Isaac Newton's formalism The acceleration a of a body is parallel and directly proportional to the net force F acting on the body, is in the direction of the net force, and is inversely proportional to the mass m of the body, i.e., $\sum F = m\ddot{x}$.
 - \bullet inertial system x
 - ullet restrictions to the forces $|F| < F_{
 m max}$ to the movements: space, range $x_1 \dots x_2$
 - one dimensional

calculate: $F = 10 \ N, \ \Delta t = 20 \ ms, \ m = 0.5 \ kg, \ x, v = ?$ state space?

• two dimensional (in a vertical gravitation field)

$$m \cdot \ddot{x_1} = F \cdot \cos \alpha$$
$$m \cdot \ddot{x_2} = F \cdot \sin \alpha - mg$$

2. several (n) points (masses)

restrictions distance $x_1^2 + x_2^2 + x_3^2 = const$

$$\sum_{j=1}^{N} (m_j \ddot{r_j} - F_j) = \sum_j \vec{F_j}$$

• two masses in one dimensional space

• Two mass points in two-dimensional space

3. several moving bodies

Lagrangian formalism

 $L = T - \Pi$ /difference between kinetic and potential energy /

as a result models are used to control

5 Chemical processes

The kinetics of chemical reactions, flow; concentration of a substance [A] (mol/l);

Example: The reaction $A+B\leftrightarrow C$ equation

$$\frac{\mathrm{d}}{\mathrm{d}t}[B] = -k \cdot [A] \cdot [B]$$

 \bullet speed of the reaction k directly depends on the temperature

$$k = k_0 \cdot e^{-E/RT}$$

nonlinear and often unstable processes

• release or absorbtion of the heat

Chemical Processes: continuous or batch processes

• polymerization

 \bullet biotechnology

 $\label{thm:control} \mbox{Temperature stabilization and control task for nonlinear, unstable process.}$

Bibliography

- [1] William L. Luyben, Process Modeling, Simulation, and Control for Chemical Engineers. McGraw-Hill, 1990.
- [2] F. G. Shinskey, Process Control Systems: application, design, and tuning. McGraw-Hill, 1996.