Process examples

1 Thermal processes

- fix a border of the system (part of the environment)
 write down the cred
 - write down the system's energy equilibrium point

$$Q_{accumulation} = Q_{in} - Q_{out} \pm Q_{occurs/absorbs}$$

$$\frac{d}{dt}Q_{ac} = F_{in} - F_{out}$$
(1)

 \pm flows through the changing rate in border F = dQ/dtsome environment

Key concepts:

the quantity of heat Q (energy) Units: $J = W \cdots, kW \cdot h, MW \cdot h$

heat flow F = dQ/dt (power) Units: W, kW

temperature indicator: T, t, θ Units: ${}^{\circ}C, K$

Processes: heat accumulation, heat transfer

1.1 Heat accumulation

Temperature rise $\Delta Q \to \Delta T$

$$\Delta Q \qquad \Delta T \qquad \Delta Q = c \cdot m \cdot \Delta T$$

$$(\sum c_i \cdot m_i) \cdot \Delta T$$

heat capacity c Heat Capacity, Specific Heat

property of matter Units: $kJ/(kg \cdot {}^{\circ}C)$

water	4.18
iron	0.44
fuel oil	2.5
ice, water vapor	2.0
air	1
Al	0.897

1.2 Heat Transfer

mass exchange, heat conduction, convection, radiation

- 1. Occurrence / absorption
 - heating with power P, burning calorific value (heat of combustion), MJ/kg heating oils 42, H_2 121; C 32;
 - phase transfers (solid-liquid-gas) $\text{melting of ice} = 334kJ/kg \; (T=0^{\circ}C)$ $\text{boiling water} = 2256kJ/kg \; (T=100^{\circ}C)$
- 2. Mass exchange: given quantity m of substance, at temperature T

$$Q = c \cdot m \cdot T, \ F = Q/t = c \cdot q \cdot T$$
 - heat flow

3. Thermal conduction

temperature difference $T_1 - T_2 \rightarrow$ heat flow q

$$q = -\lambda \cdot dt/dx \quad W/m^2 \tag{2}$$

heat flow q per surface $A = 1 m^2$ is \sim temp. gradient

Thermal conductivity λ - property of the material, units are $W/(m \cdot K)$

Cu 390, Al 210, Fe 50, steel 16, concrete 1.55, water 0.61, ice 2.2, wood 0.11, silicate cotton 0.04, leather 0.017, fat 0.21, air 0.024, etc.

With a fixed thickness x ($areaA = 1 m^2$) parameters:

$$q = \alpha \cdot \Delta T = \Delta T / R,\tag{3}$$

where α - heat transfer coefficient $\alpha = \lambda/x \quad W/(m^2 \cdot K)$ R - thermal resistance $R = x/\lambda \quad m2 \cdot K/W$

Example:

Calculate: stainless steel wall thickness of 3 mm, R = ?

With multi-layer structure thermal resistances $\sum R_i = x_1/\lambda_1 + x_2/\lambda_2 + \dots$

4. Convection - heat transfer though gas and liquid environment (2 environments!)

1 m^2 of the surface layer has the heat transfer coefficient α (thermal resistance $1/\alpha$) units: $W/(m^2 \cdot K)$

K.Vassiljeva 3 2015

gas, natural convection 3-25

motionless air 2.7

fluid, natural convection from 30 to 60

boiling water 4000 to 15000

vapor condensation from 10000 to 20000

The total heat transfer consists of components $convection + heat \ transfer + convection \ \text{with a thermal resistance}$ $R_h = 1/\alpha_1 + x/\lambda + 1/\alpha_2 = 1/\alpha$ and heat transfer coefficient α

gas - gas	$10 \dots 35$
plastic window	~ 1
water - water	$850 \dots 1700$
oil - oil	$100 \dots 300$
steam - air	$35 \dots 90$
steam - oil	$280 \dots 2300$
steam - boiling water	$1700 \dots 4500$

The total heat transfer (the whole surface A)

$$q = \alpha \cdot A \cdot \Delta T = A \cdot \Delta T / R_h \tag{4}$$

Calculate: stainless steel wall thickness of 3 mm, one side is the water $(T = 100^{\circ}C)$ on the second side is the air $(T = 20^{\circ}C)$, R = ?

5. Radiation transfer $q = \alpha \cdot A \cdot T^4$

Calculate: How quickly cools teapot V=1 L with convention and radiation ($\alpha=5.67\cdot 10^{-8}$ $W/(m^2\cdot K^4)$)?

K.Vassiljeva 5 2015

Example 1 Water boiler

m - water mass $(50 \ l, 50 \ kg) = const$ tank is full;

T - water temperature, T_e - environment temperature; P - heater power (3 kW).

$$F_{in}$$
 $\xrightarrow{\pm Q}$ $\xrightarrow{\pm Q}$

General rule:

$$F_{in}$$
 \vdash \downarrow \downarrow $\frac{dQ}{dt} = F_{in} - F_{out}$ temperature $T(t, P, m, T_e, \ldots)$

- heat in-flow (heat source) $F_{in} = P$
- heat out-flow (cooling due to environment) $F_{out_e} = K \cdot (T T_e)$
- \bullet heat out-flow (running water) mass exchange with quantity q= $\mathrm{d}m/\mathrm{d}t = q_{in} = q_{out}$

$$F_{out_f} = c \cdot q \cdot (T - T_i)$$

• quantity of heat in the boiler $Q = c \cdot m \cdot T$

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = F_{in} - F_{out_e} - F_{out_f}$$

Consider specific cases:

1. There is no flow and cooling into environment $F_{out_e} = F_{out_f} = 0$

Water is heated

$$\frac{\mathrm{d}(c\cdot m\cdot T)}{\mathrm{d}t} = P \qquad cm\frac{\mathrm{d}T}{\mathrm{d}t} = P \text{ - integrator}$$

$$P \to T \text{ transfer } T(s) = \frac{1}{s} \frac{1}{cm} P(s)$$

steady state (statics) T(P)? step response (heating)

- what is the initial temperature T(0)?
- what happens if heating is stopped P = 0?

Calculate: when the water temperature reaches $+40^{\circ}C$

2. There is no flow, the cooling into environment is present $F_{out_f} = 0$

differential equation
$$K \neq 0$$

$$\frac{d(c \cdot m \cdot T)}{dt} = P - K \cdot (T - T_e)$$

$$K \cdot T + cm \frac{dT}{dt} = P + K \cdot T_e$$
transfer $T(s) = \frac{1/K \cdot P(s) + T_e(s)}{1 + \frac{c \cdot m}{K} \cdot s}$,

time constant $\tau = cm/K$

steady state dT/dt = 0; $s = 0 \rightarrow$ final temp. $T(P, T_e)$ $T - T_e = \frac{1}{K} \cdot P$ the step response:

- \bullet equation is valid if T is lower than boiling temperature!
- cooling: $P = 0, T(t = 0) \neq T_e$

Calculate: when the heating is OFF (P=0), with temperature $+60~^{\circ}C$ boiler is cooling about $5~^{\circ}C$ 15 min. Find gain K.

3. Running water is heated

good isolation
$$K = 0$$

$$\frac{d(c \cdot m \cdot T)}{dt} = P - c \cdot q(T - T_i)$$

$$cqT\frac{dT}{dt} = P + cqT_i \text{ transfer } T(s) = \frac{1/qc \cdot P + T_i}{1 + (m/q) \cdot s},$$

time constant $\tau = m/q$

special cases:

• water is running through the tank, no heating P = 0, K = 0 is the filter for the in-flow water temperature T_i

$$T = \frac{T_i}{1 + (m/q) \cdot s}$$

- if several tanks are in series then $W = W_1 \cdot W_2 \cdot \dots$
- if several in-flows then $(q_1, T_1) + (q_2, T_2) \rightarrow (q_1 + q_2, T)$

mix of the hot and cold water

What is happening if V = 0?

Example 2 Jacketed water heater

temperature sensitive chemical processes, jacketed bio-processes (water or oil), heating P

two environments: the tank (V, T, q flow-through), jacket (V_i, T_i)

both with uniform temperature throughout the volume;

heat transfer by thermal conductivity from jacket to the tank;

heat losses to the environment are not taken into account;

process in the tank does not absorb or release heat.

$$d/dt Q = F_{in} - F_{out}; \qquad Q = cmT; \qquad m = \rho V$$

Reactor of the chemical process AS Sadolin (Rapla)

Task: programmable control of the temperature equipment:

Example 3 Oven

Model: nonlinear steady state + linear dynamics Control oven power, not voltage U! (then linear)

cooling

Bibliography

- [1] Pao C. Chau, *Process Control: A First Course with MATLAB*. Cambridge University Press, 2002.
- [2] William L. Luyben, *Process Modeling, Simulation, and Control for Chemical Engineers*. McGraw-Hill, 1990.
- [3] F. G. Shinskey, *Process Control Systems: application, design, and tuning.* McGraw-Hill, 1996.