
2015 Lecture 2

1 Processes

To solve control problem it is necessary to understand the process, we need to know what should

be automated, no matter how advanced technique we can use!

(devices used to control are discussed in course ISS0060)

we discuss:

• description of the process (di�erential equations, transfer functions,...)

• simple processes (�rst and second order)

• process examples (thermal, chemical, level)

• process models

1.1 Description of the system

System: components(parts/units) and relationships between them.

there are 3 types of metter/energy changes in the system:

1. accumulation (gathering, storage)

causes the transition processes

capacity, lag/ mahtuvused/ åìêîñòíûå

2. �ows (movement)

�ows values are limited ( 6=∞)

conductance/ juhtivus/ ïðîâîäèìîñòü

3. loss

energy → heat

system environment

border

mass energy

isolated systems const. const.

closed systems const. -

open systems - -
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de�nitions are used

system...

• phases

• equilibrium

The purpose of the process description:

Is it possible to control? How to do that? What are the features?

System types:

• continuous (pidev / íåïðåðûâíàÿ) / discrete (diskreetne / äèñêðåòíàÿ)

• deterministic/ stochastic/ chaotic

• linear / nonlinear

• with lumped/distributed parameters

• SISO/ SIMO/ MIMO/ TITO

• stable (stabiilne / óñòîé÷èâàÿ)/ unstable (mittestabiilne / íåóñòîé÷èâàÿ)

• controllable (juhitav / óïðàâëÿåìàÿ) / observable (j�algitav / íàáëþäàåìàÿ)/ robust (ro-

bustne / ðîáàñòíàÿ)

Physical value (X) conservation laws [2]:

mass(m), load(q), energy (E), momentum(mv), rotation(Jω), etc.

Changes of the value can be described:

Xaccumulation = Xinflow −Xoutflow ±Xleakage/absorbtion

change rate in the sys-

tem

�ow through the

boarder

leakage/ absorbtion

This is process model.

Using the de�nition: �ow F = X/t

dX

dt
= Fs − Fv ± Ft (1)

This is the value X balance in one dimensional environment.
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2 Process description techniques

• Di�erential equations ẋ = F (x, u)

• Transfer functions H(s)

• Frequency Response H(jω)

• Discrete time H(z)

Di�erent views of reality, their relationships, process characteristics.

2.1 Di�erential Equation

Time domain

continuous physical processes
systemu y

1. I/O representation u(t), y(t)

F (u, u̇, . . . , y, ẏ, . . .) = 0

um, yn, n ≥ m , order (j�ark/ ïîðÿäîê)

representation: operator p = d/dt

2. state-space representation (olekumudel/ ïðîñòðàíñòâî ñîñòîÿíèé)

x - state variable

ẋ = f(x, u, p) p - parameters

y = g(x, u, p) f(), g() - functions

linear time invariant equation:

ẋ = Ax+Bu A - system matrix

y = Cx+Du B - inputs matrix

C - outputs matrix

D - feedthrough matrix (often = 0)

Initial parameters

Initial parameters x(t0) represent system memory of the past t < t0

x(t0) and u(t), t > t0 de�ne the future behavior of the system x(t).
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t0

t0 t

t

x(t0)

u(t)

u y

t<t0

Steady State

steady state (p�usiolek / ñòàòèêà) working point where dx/dt = 0

f(x, u) = 0 associates inputs and outputs, often is nonlinear

max

min

0 100%

u

x

Figure 1: Process operating line

• exist limits (min,max)

• deviations from the linear dependencies

±20% - imperceptible

±50% - appreciable

• horizontal parts - input does not impact the output

• vertical parts - k �, oscillations

Process steady state is equally important as process dynamics.
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Choice of the working point (u0, x0).

Linearization of the equation
dx

dt
= f(x, u) at the working point (u0, x0)

where

f(∆u,∆x) = 0 describes the deviation variables ∆u,∆x at the working point

(u = u0 + ∆u, x = x0 + ∆x);

f(x, u) - continuous and di�erentiable.

∆ẋ =
df

dx
·∆x+

df

du
·∆u

describes the system dynamics

∆u,∆x - are the new state variables

working point is ∆x = 0

2.2 Transfer function

solutions in the frequency domain s domain

Laplace Transform f(t)

f(t)↔ F (s) variable s(1/s) changing rate

F (s) =

∫ ∞
0

f(t) · e−stdt (2)

σ

s=σ+jω

jω

F (s) = L[f(t)]

f(t) = L−1[F (s)]

function f(t)

t

f(t)

f(t) =

{
0, t<0;

f(t), t>0.

.
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If object is stable we can �nd values of the time domain functions at two extremes t = 0 and

t =∞, without inverse transform.

Initial-value theorem

lim
s→∞

[sF (s)] = lim
t→

f(t) (3)

Final-value Theorem

lim
s→0

[sF (s)] = lim
t→∞

f(t) (4)

Di�erential equation → algebraic equation

zero initial conditions give simpli�ed results

In control we use �nal-value theorem quite often [1].

Transfer function model H(s), G(s),W (s), . . .

u(t) y(t)

U(s) Y(s)

output depends on the input, zero initial val-

ues Y (s) = H(s) · U(s),

H(s) = k · s
m + · · ·+ b0
sn + · · ·+ a0

,

steady state transfer: H(s)s=0 . . . y(∞)

H(s) = k · (s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) . . . (s− pn)
,

zeros (m) and poles (n)

If poles are real:

H(s) = K · (Tz1 + 1) . . .

(Tp1 + 1)(Tp2 + 1) . . .

Realizability of the transfer function de�nes ratio n : m

strictly proper realizable if n > m

lims→∞H(s) = 0, in practice H(ω →∞) = 0

semi proper, biproper . . . = /0

improper not realizable if n < m

lims→∞H(s) =∞
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Poles of the system pi are state matrix A eigenvalues

• [A,B,C,D]→ H = C · (sI −A)−1 ·B +D

during the transfer function calculation zeros and poles can withdraw

• backward [A B C D]← is not uniquely de�ned, depend on the state choice

H can contain less information than [A B C D]

zero

pole

LHZ,	LHP RHZ,	RHP

Figure 2: Designation of the plane s = σ + jω

Stable system: Re(p) < 0

Unstable system : Re(p) > 0

The poles closer to the origin are dominant!

Why frequency domain (s domain) with transfer function H(s)?

• simpler than in time domain

• fully describes dynamics

• property of the system, does not depend on the inputs

• valid for the initial values

Characteristics

1. step g(t)

u(t) = 1(t)

U(s) = 1 · 1/s

2. impulse response h(t)
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u(t) = δ(t)

U(s) = 1

3. ramp r(t)

u(t) = σ(t) =

{
0, t<0;

t, t>0.

U(s) = 1/s2

t

1(t)

0 t0

δ(t)

t0

σ(t)

Figure 3: step, impulse, ramp signals

Those co-called "singular functions" d/dt = ∞ are suitable for system tests. Extreme modes: if

works here, then works well with other signals as well.

Block-diagram reduction

Block-diagrams illustrate a cause-and-e�ect relationship. Blocks are used to represent transfer

functions and lines for indirections information transmission.

H1 H2 H = H1 ·H2

H1

H2

+
H = H1 +H2

H1

H2

-

H =
H1

1 +H1 ·H2
=

”direct”

1 + ”loop”
.
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Using transfer functions

• get results without resolving di�erential equations;

stability, �nal-values (t =∞)

• impacts are clearly shown;

di�erences and similarities

• suitable for linear SISO systems.

2.3 Frequency Response

description of the frequency domain

If sinusoidal input is imposed and frequency response is measured the dynamic behavior of

the system can be studied. Bode and Nyquist plots are graphical representations of functional

dependance of magnitude and phase on frequency.

H(jω) = y/u = M · ejφ

1. magnitude and phase frequency characteristic M(ω)

2. phase frequency characteristic φ(ω)

3. complex frequency characteristic M(jω)

steady-state: H(ω = 0)

relationship with transfer function: H(jω) = H(s)s=jω

log scale for the magnitude

any pole on the frequency ω > ωp causes

• change of the magnitude −20 dB/dec

• phase change −π/2
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