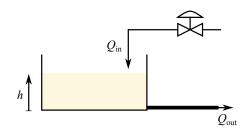
Process description: diff. equation, linearization



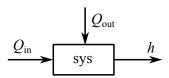
Aim: height control.

What is the dependance between flows and liquid level? Mass conservation law

$$m_{acc} = m_{in} - m_{out}$$
, if $\rho = \text{const}$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = Q_{in} - Q_{out}$$
$$V = A \cdot h$$

1 Differential equation



$$h = \frac{1}{A} \int (Q_{in} - Q_{out}) dt \tag{1}$$

What is the Q_{out} ?

It depends on the pressure on the buttom

$$P = \frac{F}{A} = \frac{m \cdot g}{A} = \frac{\rho \cdot V \cdot g}{A} = \frac{\rho \cdot h \cdot A \cdot g}{A} = \rho hg$$

In that case

$$Q_{out} \equiv n^* \sqrt{P}$$
 \Rightarrow $Q_{out} = n \sqrt{h},$

where n^* - coeff. dependant on the properties of the liquid and valve.

Thus, flow rate through a restriction such as discharge valve is

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{A}(Q_{in} - n\sqrt{h}) = \frac{1}{A}Q_{in} - \frac{n}{A}\sqrt{h}$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{A}Q_{in} - \frac{n}{A}\sqrt{h} \qquad - \text{Process model}$$
 (2)

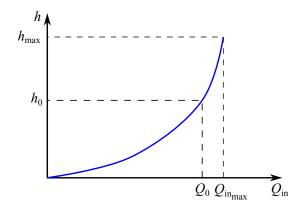
- 2 Linearization
- a) Steady-state $\frac{\mathrm{d}f}{\mathrm{d}t} = 0$

$$\dot{h} + \frac{n}{A}\sqrt{h} - \frac{1}{A}Q_{in} = 0$$

$$\dot{h} = k_1Q_{in} - k_2\sqrt{h}$$

$$K_1 = \frac{1}{A}$$

$$k_2 = \frac{n}{A}$$

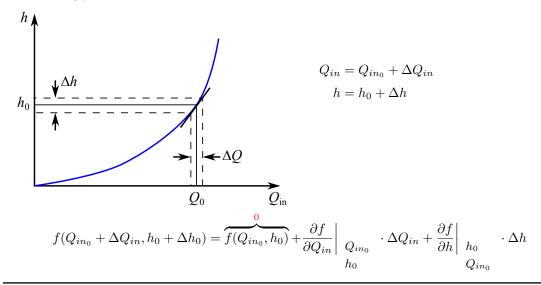


$$\dot{h} = 0$$
 \Rightarrow $Q_{in} = Q_{out}$ $k_1Q_{in} = k_2Q_{out}$ $Q_{in} \equiv \sqrt{h}$ $Q_{in}^2 = h$

$$h = f(h, Q_{in})$$

 $f(Q_{in_0}, h_0) = 0$ steady state

At a working point h_0 we want to linearize the function



2

Exercise 2

$$\Delta \dot{h} = k_1 \Delta Q_{in} + k_2 \frac{1}{2} \frac{1}{\sqrt{h_0}} \cdot \Delta h = k_1 \Delta Q_{in} - \frac{k_2}{2\sqrt{h_0}} \cdot \Delta h \quad \text{linearized equation}$$
 (3)

 $\textbf{3} \ \text{Laplace domain representation} \ W(s) = \frac{K}{1 + T \cdot s} \text{:}$

$$\frac{\mathrm{d}\Delta h}{\mathrm{d}t} + \frac{k_2}{2\sqrt{h_0}} \cdot \Delta h = k_1 \Delta Q_{in}$$

$$y + T \cdot s \frac{\mathrm{d}y}{\mathrm{d}t} = Ku$$

$$\Rightarrow \Delta h + \underbrace{\frac{2\sqrt{h_0}}{k_2}}_{T \cdot s} \underbrace{\frac{\mathrm{d}\Delta h}{\mathrm{d}t}} = \underbrace{\frac{2k_1\sqrt{h_0}}{k_2}}_{K} \Delta Q_{in}$$

$$W = \frac{\frac{2k_1\sqrt{h_0}}{k_2}}{1 + \frac{2\sqrt{h_0}}{k_2}s} = \frac{\frac{2\frac{1}{A}\sqrt{h_0}}{\frac{n}{A}}}{1 + \frac{2\sqrt{h_0}}{\frac{n}{A}}s} = \frac{\frac{2\sqrt{h_0}}{n}}{1 + \frac{2A\sqrt{h_0}}{n}s}$$
(4)

3 Exercise 2