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Lecture 4

Introduction

The graphical method for solving linear programming problems is useful when there
are exactly two variables and the number of constraints is relatively small. Note
that, if we have a large number of either variables or constraints, it is still true
that the optimal solution will be found at the vertex of the set of feasible solutions
(Lecture 3, Theorem 2). In fact, we could find these vertices by writing all the
equations corresponding to the inequalities of the problem and then proceeding to
solve all possible combinations of these equations. After that we would have to
discard any solutions that are not feasible. Then we could evaluate the objective
function at the remaining feasible solutions. After all this, we might discover that
the problem has no optimal solution at all. However, the described procedure seems
to be very complex. For example, if there were just 3 variables and 5 constraints,
we would have to solve all possible combinations of 3 equations chosen from a set
of 5 equations. It is not hard to see that there will be

(
3
5

)
= 10 solutions. Each of

these solutions will then have to be tested for feasibility. So even for this relatively
small number of variables and constraints, the work would be quite tedious.

However, in the real world of applications there are usually hundreds and even
thousands of variables involved. Therefore, we need a more systematic approach
which allows to simplify the searching procedure. One very efficient technique of
doing this is a Simplex method.

Simplex method

Let us start from the illustrative problem in which the objective function is to be
maximized.

Example 1: Solve the following linear programming problem.

z = 3x1 + 4x2 → max

2x1 + 4x2 ≤ 120

2x1 + 2x2 ≤ 80

x1 ≥ 0, x2 ≥ 0

The procedure for solving the given problem is illustrated in the following steps:

Step 1: Standard form of a maximum problem

A linear programming problem in which the objective function is to be maximized
is referred to as a maximum linear programming problem. Such problems are said
to be in standard form if the following conditions are satisfied:

� all the variables are nonnegative;
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� all the other constraints are written as a linear expression, that is, less than
or equal to a positive constant.

This particular example is a maximum problem containing two variables x1 and x2.
Since both the variables are nonnegative and the other constraints are each written
as linear expression less than or equal to a positive constant, therefore, we conclude
that the maximum problem is in standard form.

Steep 2: Slack variables and initial simplex table

In order to solve the maximum problem by simplex method, we need to do the
following first:

� introduction of slack variables;

� construction of the initial simplex table.

In this problem we have the constraints as linear expressions less than or equal to
some positive constants. That means there is a slack between the left and right sides
of the inequalities. In order to take up the slack between the left and right sides of
the problem, let us introduce the slack variables s1 and s2 which are greater than
or equal to zero, such that

2x1 + 4x2 + s1 = 120

2x1 + 2x2 + s2 = 80

Furthermore, the objective function z can be rewritten as z − 3x1 − 4x2 = 0. In
effect, we have now replaced our original system of constraints and the objective
function by a system of three equations in five unknowns as

z − 3x1 − 4x2 = 0

2x1 + 4x2 + s1 = 120

2x1 + 2x2 + s2 = 80

Here, we have to find the particular solution (x1, x2, s1, s2, z) that gives the largest
possible value for z. Then we can construct the initial (starting) simplex table
(matrix) for this system as

x1 x2 s1 s2 z b variables

2 4 1 0 0 120 s1

2 2 0 1 0 80 s2

−3 −4 0 0 1 0 z

Notice that the coefficients of the objective function are arranged in the bottom row
which is called the objective row.

From this point on, the simplex method consists of pivoting from one table to another
until the optimal solution is found.
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Pivoting: To pivot a matrix about a given element, called the pivot element, is
to apply row operations so that the pivot element is replaced by 1 and all other
entries in the same column (called pivot column) become 0. More specifically, in the
pivot row, divide each entry by the pivot element (we assume it is not 0). Obtain 0
elsewhere in the pivot column by performing row operations.

Pivot element: The pivot element for the Simplex method is found using the
following rules:

� The pivot column is selected by locating the most negative entry in the ob-
jective row. If all the entries in this column are negative, the problem is
unbounded and there is no solution.

� Divide each entry in the last column by the corresponding entry (from the
same row) in the pivot column. (Ignore the rows in which the pivot column
entry is less than or equal to 0). The row in which the smallest positive ratio
is obtained is the pivot row.

The pivot element is the entry at the intersection of the pivot row and the pivot
column.

In this example, − 4 is the most negative entry in the objective row, so the second
column is the pivot column. On dividing all the entries in the fifth column by the
corresponding entry in the second column, we get 30 as the smallest ratio, so the
first row is the pivot row. Hence, a21 = 4 is the pivot element, which is marked in
the initial table (reproduced below) by a bold font.

x1 x2 s1 s2 z b variables ratio

2 4 1 0 0 120 s1
120
4

= 30

2 2 0 1 0 80 s2
80
2

= 40

−3 −4 0 0 1 0 z

Next, we divide R1 (the first row) by 4 and then apply the operations R2− 2R1 and
R3 + 4R1. The new table becomes

x1 x2 s1 s2 z b variables ratio
1
2

1 1
4

0 0 30 x2 60

1 0 −1
2

1 0 20 s2 20

−1 0 1 0 1 120 z

In the second simplex table −1 is the most negative entry in the objective row, so
the first column is the pivot column. On dividing all the entries in the the fifth
column by the corresponding entry in the first column, we get 20 as the smallest
ratio, so the second row is the pivot row. Hence, a21 = 1 is the pivot element. This
is marked by a bold font in the second simplex table. Next, apply the operations
R1 − 1

2
R2 and R3 +R2. The new table becomes
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x1 x2 s1 s2 z b variables

0 1 1
2
−1

2
0 20 x2

1 0 −1
2

1 0 20 x1

0 0 1
2

1 1 140 z

In the above table we notice that there are no negative entries in the objective row.
Hence, the optimal solution has been found. Therefore, zmax(20, 20) = 140.

Note that, in general, a minimum problem can be changed to a maximum problem
by realizing that in order to minimize z we must maximize −z. That is in such cases
we multiply the objective function by 1 and convert it into a maximum problem and
solve it as discussed above.

Example 2: Consider the following linear programming problem.

z = x1 − 3x2 + 2x3 → min

3x1 − x2 + 2x3 ≤ 7

−2x1 + 4x2 ≤ 12

−4x1 + 3x2 + 8x3 ≤ 10

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

This is a problem of minimization in which all the constraints are written as a linear
expression, that is, less than or equal to a positive constant. Therefore, converting
the objective function for maximization, we have z′ = −x1 + 3x2 − 2x3 → max,
where z′ = −z.

After introducing the slack variable the problem can be expressed as

3x1 − x2 + 2x3 + s1 = 7

−2x1 + 4x2 + s2 = 12

−4x1 + 3x2 + 8x3 + s3 = 10

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

s1 ≥ 0, s2 ≥ 0, s3 ≥ 0

The objective function can be written as z′+x1−3x2 +2x3 = 0. The initial simplex
table for this system is

x1 x2 x3 s1 s2 s3 z′ b variables ratio

3 −1 2 1 0 0 0 7 s1

−2 4 0 0 1 0 0 12 s2
12
4

= 3

−4 3 8 0 0 1 0 10 s3
10
3

1 −3 2 0 0 0 1 0 z

The pivot column is found by locating the column containing the smallest entry
in the objective row ( − 3 in the second column). The pivot row is obtained by
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dividing each entry in the fifth column by the corresponding entry in the pivot
column (ignoring row in which the pivot column contains a negative number) and
selecting the smallest non-negative ratio. Thus, the second row is the pivot row
and the pivot element in that row is the bolded element 4. Dividing R2 by 4 and
applying the operations R1 +R2, R3−3R2, and R4 +3R2, we get the second simplex
table as

x1 x2 x3 s1 s2 s3 z b variables
5
2

0 2 1 1
4

0 0 10 s1

−1
2

1 0 0 1
4

0 0 3 x2

−5
2

0 8 0 −3
4

1 0 1 s3

−1
2

0 2 0 3
4

0 1 9 z

Applying the same procedure, we determine the next pivot element to be 5
2

in the
first column and first row. Dividing R1 by 5

2
and applying the operations R2 + 1

2
R1,

R3 + 5
2
R1, and R4 + 1

2
R1, we get the third simplex table as

x1 x2 x3 s1 s2 s3 z b variables

1 0 4
5

2
5

1
10

0 0 4 x1

0 1 2
5

1
5

3
10

0 0 5 x2

0 0 10 1 −1
2

1 0 11 s3

0 0 12
5

1
5

4
5

0 1 11 z

In the above table we see that there are no negative entries in the objective row.
Hence, the optimal solution is found. Therefore, zmax = 11 for x1 = 4, x2 =
5, x3 = 0, s1 = 0, s2 = 0, s3 = 11. Hence, the solution of the original problem is
zmin(4, 5, 0) = −11.

The big M method

Next, we present a brief description of the so-called big M method.

1. Modify the constraints so that the right-hand-side of each constraint is non-
negative. Identify each constraint that is now an = or ≥ constraint.

2. Convert each inequality constraint to canonical form (add a slack variable for
≤ constraints and a surplus variable for ≥ constraints).

3. For each ≥ or = constraint, add artificial variables such that yi ≥ 0.

4. Let M denote a very large positive number. If the linear programming problem
is a maximization problem, add (for each artificial variable) −Myi to the
objective function. Otherwise, add (for each artificial variable) Myi to the
objective function.
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5. Since each artificial variable will be in the starting basis, all artificial variables
must be eliminated from objective row before beginning the simplex. Remem-
bering that M represents a very large number, solve the transformed problem
by the Simplex method.

Remark 1. If all artificial variables in the optimal solution equal zero, the solution
is optimal. If any artificial variables are positive in the optimal solution, the problem
is infeasible.

Example 3: (The Bevco Problem, pages 172–177, Winston text) Bevco manu-
factures an orange-flavored soft drink called Oranj by combining orange soda and
orange juice. Each orange soda contains 0.5 oz of sugar and 1 mg of vitamin C.
Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C. It
costs Bevco 2¢ to produce an ounce of orange soda and 3¢ to produce an ounce of
orange juice. Bevco’s marketing department has decided that each 10-oz bottle of
Oranj must contain at least 30 mg of vitamin C and at most 4 oz of sugar. Use
linear programming to determine how Bevco can meet the marketing department’s
requirements at minimum cost.

Let x1 number of ounces of orange soda in a bottle of Oranj and x2 be the number of
ounces of orange juice in a bottle of Oranj. Then, the linear programming problem
can be written as

z = 2x1 + 3x2 → min

0.5x1 + 0.25x2 ≤ 4 sugar constraint

x1 + 3x2 ≥ 20 vitamin C constraint

x1 + x2 = 10 10 oz in one bottle of Oranj

x1 ≥ 0, x2 ≥ 0

Next, the problem has to be converted to the canonical form. Convert the objective
function z′ = −2x1 − 3x2 → max, where z′ = −z. After introducing the slack s1
and surplus s2 variables the problem can be expressed as

z′ = −2x1 − 3x2 → max

0.5x1 + 0.25x2 + s1 = 4

x1 + 3x2 − s2 = 20

x1 + x2 = 10

x1 ≥ 0, x2 ≥ 0

s1 ≥ 0, s2 ≥ 0

The linear programming problem in canonical form has z′ and s1 which could be used
for constructing the initial simplex table, but row 3 would violate sign restriction.
In order to use the Simplex method, a basic feasible solution is needed. To remedy
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the predicament, artificial variables are created.

z′ = −2x1 − 3x2 → max

0.5x1 + 0.25x2 + s1 = 4

x1 + 3x2 − s2 + y1 = 20

x1 + x2 + y2 = 10

In the optimal solution, all artificial variables must be set equal to zero. To accom-
plish this, a term −Myi has to be added to the objective function for each artificial
variable yi. M represents some very large number. The modified canonical form
then becomes

z′ + 2x1 + 3x2 +My1 +My2 = 0

0.5x1 + 0.25x2 + s1 = 4

x1 + 3x2 − s2 + y1 = 20

x1 + x2 + y2 = 10

Modifying the objective function this way makes it extremely costly for an artificial
variable to be positive. The optimal solution should force y1 = y2 = 0. Finally, the
initial simplex table for this problem is

x1 x2 s1 s2 y1 y2 z′ b variables ratio
1
2

1
4

1 0 0 0 0 4 s1

1 3 0 −1 1 0 0 20 y1

1 1 0 0 0 1 0 10 y2

2 3 0 0 M M 1 0 z

Since we must eliminate all artificial variables from the objective row, perform the
following operation R4 −MR2 −MR3.

x1 x2 s1 s2 y1 y2 z′ b variables ratio
1
2

1
4

1 0 0 0 0 4 s1 16

1 3 0 −1 1 0 0 20 y1
20
3
≈ 6.67

1 1 0 0 0 1 0 10 y2 10

2− 2M 3− 4M 0 M 0 0 1 −30M z

Now, we can see that the second column is the pivot column, because it contains
the smallest entry in the objective row. The pivot row is obtained by choosing the
smallest non-negative ration among all rows. Thus, the second row is the pivot row.
Diving R2 by 3 and applying the operations R1− 1

4
R2, R3−R2, and R4−(3−4M)R2,

we get the second simplex table as
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x1 x2 s1 s2 y1 y2 z′ b variables ratio
5
12

0 1 1
12

− 1
12

0 0 7
3

s1
28
5

= 5.6
1
3

1 0 −1
3

1
3

0 0 20
3

x2 20
2
3

0 0 1
3

−1
3

1 0 10
3

y2 5

1− 2
3
M 0 0 1− 1

3
M −1 + 4

3
M 0 1 −20− 10

3
M z

Applying the same procedure as described above, we determine the next pivot ele-
ment to be 2

3
in the first column and third row. Dividing R3 by 2

3
and applying the

operations R1 − 5
12
R3, R2 − 1

3
R3, and R4 − (1 − 2

3
M)R3, we get the third simplex

table as

x1 x2 s1 s2 y1 y2 z′ b variables

0 0 1 −1
8

1
8

−5
8

0 1
4

s1

0 1 0 −1
2

1
2

−1
2

0 5 x2

1 0 0 1
2

−1
2

3
2

0 5 x1

0 0 0 1
2
−1

2
+M −3

2
+M 1 −25 z

In the above table we see that there are no negative entries in the objective row.
Hence, the optimal solution is found. Therefore, zmax = −25 for x1 = 5, x2 = 5, s1 =
1
4
, s2 = 0. Hence, the solution of the original problem is zmin(5, 5, 1

4
, 0) = 25.

Solutions: special cases

Example 4: (Alternate optimal solutions) Consider the following linear pro-
gramming problem

z = x1 + 0.5x2 → max

2x1 + x2 ≤ 4

x1 + 2x2 ≤ 3

x1 ≥ 0, x2 ≥ 0

As before, we add slack variables s1, s2 and solve the problem by the Simplex method,
using table representation.

x1 x2 s1 s2 z b variables ratio

2 1 1 0 0 4 s1
4
2

= 2

1 2 0 1 0 3 s2
3
1

= 3

−1 −1
2

0 0 1 0 z

1 1
2

1
2

0 0 2 x1

0 3
2
−1

2
1 0 1 s2

0 0 1
2

0 1 2 z
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Now, we may see that this is an optimal solution. Interestingly, the coefficient of the
nonbasic variable x2 in the objective row happens to be equal to 0. However, if we
increase x2 (from its current value of 0), this will not effect the value of z. Increasing
x2 produces changes in the other variables, of course, through the equations in rows
1 and 2. In fact, we can pivot to get a different basic solution with the same objective
value z = 2.

x1 x2 s1 s2 z b variables

1 0 2
3
−1

3
0 5

3
x1

0 1 −1
3

2
3

0 2
3

x2

0 0 1
2

0 1 2 z

Therefore, the optimal solutions can be represented as zmax(x) = 2, where x =
αp1 + (1− α)p2 =

(
1
3
α + 5

3
, (1− α)2

3
, 0, α

)
with p1 = (2, 0, 0, 1), p2 = (5

3
, 2
3
, 0, 0) and

0 ≤ α ≤ 1.

Remark 2. The linear programming problem has alternative optimal solutions (mul-
tiple optimal solutions) if, at least, one of the coefficients of the nonbasic variable in
the objective row equals to zero.

Example 5: (Degeneracy) Consider the following linear programming problem

z = 2x1 + x2 → max

3x1 + x2 ≤ 6

x1 − x2 ≤ 2

x2 ≤ 3

x1 ≥ 0, x2 ≥ 0

The initial simplex table can be written in the following form

x1 x2 s1 s2 s3 z b variables ratio

3 1 1 0 0 0 6 s1
6
3

= 2

1 −1 0 1 0 0 2 s2
2
1

= 2

0 1 0 0 1 0 3 s3

−2 −1 0 0 0 1 0 z

We may see that the first column can be chosen as the pivot column and the second
row as the pivot row (the minimum ratio is a tie, and ties are broken arbitrarily).
After a simple calculations this yields the second table below.

x1 x2 s1 s2 s3 z b variables ratio

0 4 1 −3 0 0 0 s1
0
4

1 −1 0 1 0 0 2 x1

0 1 0 0 1 0 3 s3
3
1

0 −3 0 2 0 1 4 z
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Note that this basic solution has a basic variable (namely s1) which is equal to zero.
When this occurs, we say that the basic solution is degenerate. Let us continue the
steps of the Simplex method. Next, we have that the second column is the pivot
column. After that, we calculate the ratios and may see that the minimum ratio
occurs in the first row. So let us perform the corresponding pivot.

x1 x2 s1 s2 s3 z b variables ratio

0 1 1
4
−3

4
0 0 0 x2

1 0 1
4

1
4

0 0 2 x1 8

0 0 −1
4

3
4

1 0 3 s3 4

0 0 3
4
−1

4
0 1 4 z

We get exactly the same solution. The only difference is that we have interchanged
the names of a nonbasic variable with that of a degenerate basic variable (x2 and
s1). However, we see that this solution is not optimal. Now, the fourth column is
the pivot column and the third row. After pivoting, we get the following table

x1 x2 s1 s2 s3 z b variables

0 1 0 0 1 0 3 x2

1 0 1
3

0 −1
3

0 1 x1

0 0 −1
3

1 4
3

0 4 s2

0 0 2
3

0 1
3

1 5 z

In the above table we see that there are no negative entries in the objective row.
Hence, the optimal solution is found. So, after all, degeneracy did not prevent the
Simplex method to find the optimal solution zmax(1, 3) = 5. It just slowed things
down a little. Unfortunately, on other examples, degeneracy may lead to cycling, i.e.
a sequence of pivots that goes through the same tables and repeats itself indefinitely.
In theory, cycling can be avoided by choosing the entering variable (pivot column)
with smallest index among all those with a negative coefficient in the objective row,
and by breaking ties in the minimum ratio test by choosing the leaving variable with
smallest index (this is known as Bland’s rule). This rule, although it guaranties
that cycling will never occur, turns out to be somewhat inefficient. Actually, in
commercial codes, no effort is made to avoid cycling. This may come as a surprise,
since degeneracy is a frequent occurrence. But there are two reasons for this:

� Although degeneracy is frequent, cycling is extremely rare.

� The precision of computer arithmetic takes care of cycling by itself: round off
errors accumulate and eventually gets the method out of cycling.

Example 6: (Unbounded optimum) Consider the following linear programming
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problem

z = 2x1 + x2 → max

−x1 + x2 ≤ 1

x1 − 2x2 ≤ 2

x1 ≥ 0, x2 ≥ 0

Solving by the simplex method, we get

x1 x2 s1 s2 z b variables

−1 1 1 0 0 1 s1

1 −2 0 1 0 2 s2

−2 −1 0 0 1 0 z

0 −1 1 1 0 3 s1

1 −2 0 1 0 2 x1

0 −5 0 2 1 4 z

At this stage, we have to choose the second column as a pivot column, but there is
no ratio to compute, since all entries are negative. As we start increasing x2, the
value of z increases and the values of the basic variables increase as well. There is
nothing to stop them going off to infinity. Therefore, the problem is unbounded.

Summary

Let us briefly summarize the presented above theory. Consider a linear programming
problem given in the standard form

z = CX → max

AX ≤ B

X ≥ 0

It has to be converted to the canonical form

z = CX → max

AX = B

X ≥ 0

� If it is necessary to find z → min, then we can use the substitution z′ = −z
and solve the maximum problem z′ → max.

� If there are inequalities ≤,≥ involved in the constraints, then the equality sign
= can be obtained using slack or surplus variables, i.e.

– if a1x1 + a2x2 ≤ c, then a1x1 + a2x2 + s1 = c for s1 ≥ 0;
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– if a1x1 + a2x2 ≥ c, then a1x1 + a2x2 − s2 = c for s2 ≥ 0.

� If, for example, there is no condition x1 ≥ 0, then x1 = x′1 − x′′1 for x′1, x
′′
1 ≥ 0.

The Simplex method can be applied if:

1. B ≥ 0;

2. there is a basic feasible solution, i.e. it is possible to single out an identity
matrix of order m in the initial simplex table. If there is no basic feasible
solution, then so-called M method can be applied to construct initial simplex
table.

Definition 1. The variables corresponding to the columns of the identity matrix in
the initial simplex table are called basic variables while the remaining variables
are called nonbasic or free variables.

Theorem 1. A basic feasible solution to a linear programming problem corresponds
to an extreme point in the convex set of feasible solutions.

Corollary 1. Each extreme point corresponds to one or more basic feasible solu-
tions. If one of the basic feasible solutions is non-degenerate, then an extreme point
corresponds to it uniquely.

General structure of simplex table:

Variables

basic slack/surplus artificial basis

x1 . . . xn s1 . . . sk y1 . . . yl z b variables ratio

Summary of the Simplex method:

Step 1: Add slack variables to change the constraints into equations and write all
variables to the left of the equal sign and constants to the right.

Step 2: Write the objective function with all nonzero terms to the left of the equal
sign and zero to the right. The variable to be maximized must be positive.

Step 3: Set up the initial simplex tableau by creating an augmented matrix from
the equations, placing the equation for the objective function last.

Step 4: Determine a pivot element and use matrix row operations to convert the
column containing the pivot element into a unit column.

Step 5: If negative elements still exist in the objective row, repeat Step 4. If all
elements in the objective row are positive, the process has been completed.

Step 6: When the final matrix has been obtained, determine the final basic solution.
This will give the maximum value for the objective function and the values of
the variables where this maximum occurs.
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Geometric interpretation of the Simplex method: The simplex method al-
ways starts at the origin (which is a corner point) and then jumps from a corner
point to the neighboring corner point until it reaches the optimal corner point (if
bounded). Therefore, at each one of the simplex iterations, we are searching for a
better solution among the vertices of a Simplex.

Exercises

Solve the following linear programming problem by Simplex method.

Example 7:

z = 6x1 − 8x2 + x3 → max

3x1 + x2 ≤ 10

4x1 − x2 ≤ 5

x1 + x2 − x3 ≥ −3

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Example 8:

z = −2x1 + 3x2 − 6x3 − x4 → min

2x1 + x2 − 2x3 + x4 = 24

x1 + 2x2 + 4x3 ≤ 22

x1 − x2 + 2x3 ≥ 10

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

Example 9:

z = 12x1 + 14x2 + 16x3 → max

x1 + x2 + x3 ≤ 24

x1 + 2x2 + 3x3 ≥ 51

3x1 + 2x2 + x3 = 57

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Problems

Solve the following linear programming problem by Simplex method.

4.1:

z = 4x1 + 3x2 → max

3x1 + x2 ≤ 9

−x1 + x2 ≤ 1

x1 + x2 ≤ 6

x1 ≥ 0, x2 ≥ 0

13



4.2:

z = 2x1 − x4 → max

x1 + x2 = 20

x2 + 2x4 ≥ 5

−x1 + x2 + x3 ≤ 8

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

4.3:

z = 2x1 − 6x2 + 5x5 → max

−2x1 + x2 + x3 + x5 = 20

3x1 − x2 + x4 + 3x5 = 24

3x1 − x2 − 12x5 + x6 = 18

xi ≥ 0 for i = 1, . . . , 6

4.4:

z = 2x1 + x2 − x3 + x4 − x5 → max

x1 + x2 + x3 = 5

2x1 + x2 + x4 = 9

x1 + 2x2 + x5 = 7

xi ≥ 0 for i = 1, . . . , 5

4.5:

z = 3x1 + 2x2 − x3 → max

x1 + 3x2 + x3 ≤ 5

2x1 + 3x2 − x3 ≥ 2

3x1 − 2x2 + x3 ≥ 5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

4.6:

z = 2x1 − x2 + x3 → max

x1 + x2 − 3x3 ≤ 8

4x1 − x2 + x3 ≥ 2

2x1 + 3x2 − x3 ≥ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

4.7:

z = 3x1 + 4x2 → max

−x1 − x2 ≥ −12

5x1 + 2x2 ≥ 36

7x1 + 4x2 ≥ 14

x1 ≥ 0, x2 ≥ 0
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4.8:

z = 4x1 + 2x2 → min

3x1 + x2 ≥ 27

−x1 − x2 ≤ −21

x1 + 2x2 ≥ 30

x1 ≥ 0, x2 ≥ 0

4.9:

z = 9x1 + 14x2 + x3 → max

9x1 + 4x2 + 4x3 ≤ 54

9x1 + 5x2 + 5x3 ≤ 63

x2 ≤ 5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

4.10:

z = 3x1 + 2x2 + x3 → max

2x1 + 2x2 + 4x3 ≤ 540

x1 + 5x2 + x3 ≤ 360

6x1 + 2x2 + x3 ≤ 180

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
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Answers to problems

1. zmax(2, 3) = 17.

2. zmax(20, 0, 0, 5
2
) = 75

2
.

3. zmax(0, 0, 12, 0, 0, 8, 114) = 40.

4. zmax(3, 2, 0, 1, 0) = 9.

5. zmax(9, 0, 0) = 27.

6. The problem is unbounded and there is no solution.

7. zmax(4, 8) = 44.

8. zmin(3, 18) = 48.

9. zmax(x) = 108, where x =
(
2α, 5, 38−18α

5
, 18

5
(1− α), 0, 0

)
and 0 ≤ α ≤ 1.

10. zmax(x) = 180, where x = (0, 30(1 + α), 60(2 − α), 180α, 30(1 − α), 0) and
0 ≤ α ≤ 1.
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