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Lecture 3

Convex set and function

Let S 6= ∅, S ⊂ R
n and x1, x2 ∈ S.

Definition 1. The set [x1, x2] = {x|x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1} is called a line
segment with the endpoints x1, x2.

Example 1: Let x1(2, 1) and x2(4, 3). Next, using the formula from Definition 1,
we get

x1 = 2λ+ (1− λ)4

x2 = λ+ (1− λ)3

0 ≤ λ ≤ 1.

Definition 2. A set S in a vector space over R is called a convex set if the line
segment joining any pair of points x1, x2 ∈ S lies entirely in S.

Example 2: Consider different examples of convex and non-convex sets.
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Proposition 1. A solution set L for the linear inequality a1x1+a2x2+· · ·+anxn ≤ b
is a convex set.

Proof: Let the points C1(c
1
1, c

1
2, . . . , c

1
n
) and C2(c

2
1, c

2
2, . . . , c

2
n
) be solutions of the

given inequality. Then,

a1c
1

1 + a2c
1

2 + · · ·+ anc
1

n
≤ b

a1c
2

1 + a2c
2

2 + · · ·+ anc
2

n
≤ b

Next, we multiply the first inequality by λ, the second inequality by 1− λ and add
results

a1(λc
1

1 + (1− λ)c21) + a2(λc
1

2 + (1− λ)c22) + · · ·

+ an(λc
1

n
+ (1− λ)c2

n
) ≤ λb+ (1− λ)b = b.

Using the obtained result, we can conclude that the point C(λc11 + (1− λ)c21, λc
1
2 +

(1− λ)c22, . . . , λc
1
n
+ (1− λ)c2

n
) = λC1 + (1− λ)C2 ∈ L. �

Proposition 2. The intersection of any finite number of convex sets is a convex
set.

Proof: Suppose S1, S2, . . . , Sn are convex sets. Then their intersection
⋂

n

i=1
Si =

{x : x ∈ Si, ∀i = 1, . . . , n} is also a convex set. To see this, consider x1, x2 ∈
⋂

n

i=1
Si

and 0 ≤ λ ≤ 1. Then, λx1 + (1 − λ)x2 ∈ Si for i = 1, . . . , n by Definition 2.
Therefore, λx1 + (1− λ)x2 ∈

⋂
n

i=1
Si. �

Corollary 1. The solution set of a system of linear inequalities is a convex set.

Corollary 2. The solution set of linear equations is a convex set.

Corollary 3. The solution set of constraints for linear programming problem (set
of feasible solutions) is a convex set.

Next, we present the generalization of Definition 2.

Definition 3. Given a finite number of points x1, x2, . . . , xn in a real vector space,
a convex combination of these points is a point of the form α1x1+α2x2+ · · ·+αnxn,
where the real numbers αi ≥ 0 and α1 + α2 + · · ·+ αn = 1.

Example 3: Consider two special cases of Definition 3:
Case 1: Let n = 2, then a convex combination of points x1, x2 is in the form
x = λ1x1+λ2x2, where λ1+λ2 = 1 and λ1, λ2 ≥ 0. Denote by λ1 = λ, then λ2 = 1−λ
and we get that the convex combination of two points is x = λx1 + (1− λ)x2.

x1

x2

x3

x4
x

Case 2: Let n = 3, then x4 = α2x2 + α3x3, where
α2 + λ3 = 1 and α2, α3 ≥ 0; x = β1x1 + β4x4,
where β1 + β4 = 1 and β1, β4 ≥ 0. Then, we get
that the convex combination of 3 points is: x =
β1x1+β4(α2x2+α3x3) = β1x1+β4α2x2+β4α3x3 =
λ1x1+λ2x2+λ3x3, where λ1+λ2+λ3 = β1+(β4α2+
β4α3) = β1 + β4(α2 + α3) = β1 + β4 = 1.
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Definition 4. Let x be a convex combination of points from the set S. Then, S is
called convex if x ∈ S.

Example 4: Verify that the point P (6, 3) is an interior point of the set

−4x1 + 7x2 ≤ 13

6x1 − x2 ≤ 47

x1 + 3x2 ≥ 11

and express P as a convex combination of the vertices of the solutions of these
system.

Substituting coordinates of the point P to each inequality, one can see that all of
them hold. Therefore, the point P (6, 3) is the interior point of the corresponding
polytope. Draw the graphs of given inequalities as follows.
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One may easily see that the obtained polytope has 3 vertices. In order to find
coordinates of A,B and C, we have to solve 3 systems of linear equation. Let us
find coordinates of the point A. For that purpose we have to solve the following
system of linear equations.

−4x1 + 7x2 = 13

x1 + 3x2 = 11

One method for solving such a system is as follows. First, solve the second equation
for x1 in terms of x2 as x1 = 11 − 3x2. Now, substitute this expression for x1 into
the first equation as −4(11 − 3x2) + 7x2 = 13. This results in a single equation
involving only the variable x2. Solving gives x2 = 3, and substituting this into the
equation for x1 yields x1 = 2. Therefore, A(2, 3). Similarly, we can calculate that
B(9, 7) and C(8, 1). Next, according to Definition 3, we get X = αA + βB + γC
with α+ β + γ = 1 and α, β, γ ≥ 0. Thus, we can construct the following system of
equations.

2α+ 9β + 8γ = 6

3α+ 7β + γ = 3

α + β + γ = 1
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A solution to the system above is given by α = 7/19, β = 8/19, γ = 4/19. Finally,
substituting the obtained solution to the expression for X , we get

X =
7

19
A +

4

19
B +

8

19
C.

Definition 5. A real valued function f : S → R defined on a convex set S in a
vector space is called convex or concave if, for any two points x1 and x2 in S and
any 0 ≤ λ ≤ 1, f(λx1+ (1−λ)x2) ≤ λf(x1) + (1−λ)f(x2) or f(λx1+(1−λ)x2) ≥
λf(x1) + (1− λ)f(x2).

Example 5: f(x) = x2 is convex on R; f(x) = log x is concave on R
+; f(x) = 1

x
is

convex on R
+ and concave on R

−; f(x) = x3 − x is neither convex nor concave on
R.

Proposition 3. A linear function f = a1x1 + a2x2 + · · ·+ anxn is both convex and
concave.

Proof: Let X1(x
′

1, x
′

2, . . . , x
′

n
) and X2(x

′′

1, x
′′

2, . . . , x
′′

n
). Then, λX1 + (1 − λ)X2 =

(λx′

1 + (1− λ)x′′

1, . . . , λx
′

n
+ (1− λ)x′′

n
) and

f(λX1 + (1− λ)X2) = a1(λx
′

1 + (1− λ)x′′

1) + · · ·+ an(λx
′

n
+ (1− λ)x′′

n
) =

= λ(a1x
′

1 + a2x
′

2 + · · ·+ anx
′

n
) + (1− λ)(a1x

′′

1 + a2x
′′

2 + · · ·+ anx
′′

n
) =

= λf(X1) + (1− λ)f(X2).

Hence, we can conclude that f is convex and concave. �

Convex optimization problem

Definition 6. A function f(x) is said to have a local maximum (minimum) at x0

if there exists an interval I around x0 such that f(x0) ≥ f(x) (f(x0) ≤ f(x)) for all
x ∈ I.

Definition 7. We say that the function f(x) has a global maximum (minimum) at
x = x0 on the interval I, if f(x0) ≥ f(x) (f(x0) ≤ f(x)) for all x ∈ I.

Note that if f(x) is a continuous function on a closed bounded interval [a, b], then
f(x) will have a global maximum and a global minimum on [a, b]. On the other
hand, if the interval is not bounded or closed, then there is no guarantee that a
continuous function f(x) will have global extremum.

Example 6: f(x) = x2 does not have a global maximum on the interval [0,∞), the
function f(x) = − 1

x
does not have a global minimum on the interval (0, 1).

Definition 8. A convex optimization problem is a problem where all of the con-
straints are convex functions, and the objective is a convex function if minimizing,
or a concave function if maximizing.

Theorem 1. For a convex optimization problem all locally optimal points are globally
optimal.
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Linear programming as a special case of convex optimization

problem

The linear programming problem can be stated as follows:

z = c1x1 + c2x2 + · · ·+ cnxn → min

subject to the constraints

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

and
x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.

Theorem 2. If a linear programming problem has a solution, then it must occur at
a vertex, or corner point, of the feasible set S, associated with the problem. Further-
more, if the objective function z is optimized at two adjacent vertices of S, then it
is optimized at every point on the line segment joining these two vertices, in which
case there are infinitely many solutions to the problem.

Proof: The proof is by contradiction. Suppose that the optimal solution x∗ is an
interior point of the feasible set S. Since the set is convex, then there exist two
points x1, x2 ∈ S such that x∗ ∈ [x1, x2], i.e., x

∗ = λx1 + (1 − λ)x2. We know that
x∗ is optimal solution, then denoting f(x) := c1x1 + · · ·+ cnxn, we get

f(x∗) ≥ f(x1),

f(x∗) ≥ f(x2).
(1)

Since f(x) is linear (convex) function

f(x∗) = f(λx1 + (1− λx2)) = λf(x1) + (1− λ)f(x2). (2)

Substituting (2) to (1), we get

f(x1) ≤ λf(x1) + (1− λ)f(x2)

f(x2) ≤ λf(x1) + (1− λ)f(x2)

or after simple transformations f(x1) = f(x2). From (2) it follows that f(x∗) =
λf(x1) + (1− λ)f(x2) = f(x1). Hence, we get f(x1) = f(x2) = f(x∗) = z0 ∈ R. As
a result, points x1, x2, x

∗ are in the hyperplane f(x) = z0. We know that the point x∗

defines this hyperplane; however, the end points of the line segment [x1, x2] are free
to choose. Therefore, points x1, x2 may not necessarily belong to this hyperplane.
This contradicts our assumption, showing that x∗ has to be on the boundary of the
set S. �

Remark 1. Theorem 2 tells us that our search for the solution(s) to a linear pro-
gramming problem may be restricted to the examination of the set of vertices of the
feasible set S associated with the problem. Since a feasible set S has finitely many
vertices, the theorem suggest that the solution(s) may be found by inspecting the
values of the objective function z at these vertices.
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Problems

3.1: Find intervals where the following functions are convex (concave): f(x) = x2,
f(x) = ex, f(x) = x3, f(x) = 1

x
, f(x) = 1

x2 , f(x) = sin x, f(x) = x5 + 5x − 6,
f(x) = (x+ 1)2(x− 2), and f(x) = xex.
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Answers to problems

1. Use the following theorem

Theorem 3. If f(x) has a positive (negative) second derivative f ′′(x) every-
where on I ⊆ R, then f(x) is convex (concave) on I.
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