ISS0031 Modeling and Identification

Lecture 2

System of linear equations: solution set

Let us consider a simple problem in two variables z; and x,. Find x; and x5 which
satisfy the following equations

T1+ Ty = 5
2113'1 + 3!13'2 =7
Solving these equations, we get x1 = 8 and x5 = —3. However, one may ask: what

happens when the number of equations and variables will be greater or less?

Let n be the number of unknowns and m be the number of equations. A linear
system may behave in any one of three possible ways:

1. If m < n, then a system has infinitely many solutions (underdetermined sys-
tem).

2. If m = n, then a system has a single unique solution.

3. If m > n, then a system has no solutions (overdetermined system).

Here we may ask another question: if relations are in the form of inequalities, can
we find a solution for such a system?” Whenever the analysis of a problem leads to
minimizing or maximizing a linear expression in which the variable must obey a col-
lection of linear inequalities, a solution may be obtained using linear programming
techniques. One way to solve linear programming problems that involve only two
variables is geometric approach called graphical solution of the linear program-
ming problem.

Linear programming problem: a geometric approach

To solve a linear programming problem involving two variables by the graphical
method, use the following steps

1. Formulate the linear programming problem.
2. Graph the constraints inequalities.

3. Identify the feasible region which satisfies all the constraints simultaneously.
For "less than or equal to” constraints the region is generally below the lines
and "for greater than or equal to” constraints, the region is above the lines.

4. Locate the solution points on the feasible region. These points always occur
at the vertex of the feasible region.



5. Evaluate the objective function at each of the vertex (corner point).

6. Identify the optimum value of the objective function. For a bounded region,
both a minimum and maximum value will exist. (For an unbounded region, if
an optimal solution exists, then it will occur at a vertex.)

Optimal solution of a linear programming problem:

e [f a linear programming problem has a solution, it must occur at a vertex of
the set of feasible solutions.

e If the problem has more than one solution, then at least one of them must
occur at a vertex of the set of feasible solutions.

e If none of the feasible solutions maximizes (or minimizes) the objective func-
tion, or if there are no feasible solutions, then the linear programming problem
has no solutions.

Next, we illustrate the discussed approach by the number of numerical examples.
Example 1: Consider the following linear programming problem
z = x1 + 2x9 — max(min)
T+ 29 2> 1
x1 20,290 > 0.
Draw the graphs of these inequalities, which is as follows.
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Figure 1: Feasible region (light blue)

The region satisfied by z; > 0 and xo > 0 is the first quadrant and the region
satisfied by the line x1 + x5 > 0 along with z; >, x5 > 0 will be on that side of the
line 1 + 22 = 1 in which the origin is not located. Every point in the region satisfies
all the mathematical inequalities and hence the feasible solution. Now, we have to
find optimal solution. The vertices of the feasible region are A(1,0) and B(0,1).
The value of z at A is 1. The value of z at B is 2.



e Minimum: We can immediately conclude that the value of 2z is minimum at
A(1,0), i.e. zmin(1,0) = 1.

e Maximum: If we take the value of z at any other point from the feasible
region, then we notice that every time we can find another point which gives
the larger value than the previous one. It is due to the fact that the region,
determined by the constraints, is unbounded. Hence, there is no feasible point
that will make z largest. Therefore, we conclude that this linear programming
problem has no solution in case of maximizing the objective function.

Example 2: Consider the following linear programming problem

z =x1 4+ 229 — min
1+ a9 > 1
2@ +4x9 > 3
212> 0,29 >0

Draw the graphs of these inequalities as follows.
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Figure 2: Feasible region (light blue)

The shaded region is the feasible region. Hence, the shaded region is our feasible
solution because every point in this region satisfies all the constraints. Now, we have
to find the optimal solution. First, we check the vertices of the region: z(A) = 2,
2(B) = 1.5, and z(C) = 1.5. In this case, we can conclude that the objective
function has a minimum value not only at the vertices B and C', it also has a
minimum value at any point on the line segment connecting these two vertices, i.e
T, = 3_22a,x2 = 0.50,0 < a < 1. Of course, the reason that any feasible point
(between B and C') on 221 4+ 4x5 = 3 minimizes the objective function z = 1 + 25
is that the two lines are parallel (both have slope —0.5). Therefore, this linear
programming problem has infinitely many solutions and two of them occur at the

vertices.




Example 3: Consider the following linear programming problem

z = 221 + 9 — max(min)
T+ 225 < 2
1+ 29 < 1.5
120,29 >0

Draw the graphs of these inequalities as follows.

Figure 3: Feasible region (light blue)

The shaded region OABC' is the feasible region. Every point in the region satisfies
all the mathematical inequations and hence the feasible solutions. Now, we have to
find the optimal solution. We check the vertices of the region: z(A) =1, z(B) = 2.5,
2(C) =3, and z(0) = 0. If we take any other value from the feasible region we see
that still the maximum value is 3 obtained at the vertex C(1.5,0) of the feasible
region. The same arguments hold for the minimum value z,;,(0,0) = 0.

Exercises

Solve graphically the linear programming problems:

Example 4:

z = 311 + 2x9 — max
r1 4 229 < 4
T, — 29 <1
120,29 >0



Example 5:

z = bx1 + Txy — min
21+ 3122 > 6
3r; —x9 < 15
—T1 + 19 <4
221 + Sy < 27
1> 0,29 >0

Example 6:

z = 4x1 + 39 — max(min)
201 + 319 > 6
3r; — 215, <9
T, + dxy < 20
x1 > 0,29 >0

Example 7:

z = 3x1 + 49 — max
1+ 19 < 40
T + 225 < 60
120,29 >0

Example 8:

z = 311 + 49 — max
1 + 29 < 40
1+ 229 < 60
120,29 >0

Example 9:

z = 4x1 — 3x9 — max(min)
31+ 19 <9
—r1+ 129 <1

1+ 29 <6
120,79 20

Example 10: A machine producing either product P; and P, can produce P; by
using 2 units of chemicals and 1 unit of a compound and can produce P; by using
1 unit of chemicals and 2 units of the compound. Only 800 units of chemicals and
1000 units of the compound are available. The profits available per unit of P, and P,
are respectively 30 EUR and 20 EUR. Find the optimum allocation of units between
P, and P, to maximize the total profit. Find the maximum profit.

bt



Example 11: A calculator company produces a scientific calculator and a graphing
calculator. Long-term projections indicate an expected demand of at least 100
scientific and 80 graphing calculators each day. Because of limitations on production
capacity, no more than 200 scientific and 170 graphing calculators can be made daily.
To satisfy a shipping contract, a total of at least 200 calculators much be shipped
each day. If each scientific calculator sold results in a 2EUR loss, but each graphing
calculator produces a 5 EUR profit, how many of each type should be made daily
to maximize net profits?

Example 12: A farmer has 10 acres to plant in wheat and rye. He has to plant
at least 7 acres. However, he has only 1200 EUR to spend and each acre of wheat
costs 200 EUR to plant and each acre of rye costs 100 EUR to plant. Moreover, the
farmer has to get the planting done in 12 hours and it takes an hour to plant an
acre of wheat and 2 hours to plant an acre of rye. If the profit is 500 EUR per acre
of wheat and 300 EUR per acre of rye how many acres of each should be planted to
maximize profits?

Problems

Solve graphically the mathematical programming problems:

2.1:

z = 2x1 — 2x9 — max(min)
T — 322 <0
—x1 + 29 <2
4xq + 929 < 36
120,79 20

2.2:

z = —2x1 — 3x9 — max(min)
T — 229 <0
6x1 + 9xy > 27
—x1+a9 <4
To < H
120,29 >0

2.3:

z:xf+z§—>max
2LL’1—|—3LL’2§6
120,20 >0



2.4:

z = ($1—1)2+(l’2—1)2 — min
21’1"—31’2 §6
r1 20,22 >0

2.5:

z = 511 — 49 — max
r1+ 29 >4
201 + 29 <6
120,20 >0

2.6:

z = 57} — 87 — max(min)
311+ 22 < 10
T+ 22 <6
1> 0,29 >0

2.7:

z = r1ry — max(min)
:5% + 29 < 12
o]+ 13 < 24
x1 > 0,29 >0

2.8:

z = 2x1 + 49 — max(min)
—x1+ 315 >0
T1+ 229 <5
r1+ 29 > 2
21 20,2020

2.9:

z = 621 + 2x9 — max(min)
T — Lo < 2
3r1+ 22 >3
—r1+22 <5
1 < 6,29 <6
21 20,2020



2.10:

z = 1421 + 429 — max(min)
8x1 4+ 91y < 72
Ty + 2x9 > 14
—r1 + 22 <2
41 —Txy < 14
120,79 20

2.11: A retired couple have up to 30000 EUR to invest in fixed-income securities.
Their broker recommends investing in two bonds: one a AAA bond yielding 8%;
the other a B+ bond paying 12%. After some consideration, the couple decide to
invest at most 12 000 EUR in the B+-rated bond and at least 6000 EUR in the
AAA bond. They also want the amount invested in the AAA bond to exceed or
equal the amount invested in the B+ bond. What should the broker recommend if
the couple want to maximize the return on their investment?



Answers to problems

10.
11.

2.0) = 232 and 2 (0,6) = —48.

) = 8.

1
2

—_— —) = % and Zmin(l'l,.ilfg) = 28, 1 = 2 — %O&,SL’Q = %Oz.
The maximum return on investment is 2880 EUR, obtained by placing 18000

in the AAA bond and 12000 in the B+ bond, i.e. 2z (18000, 12000) = 2880.



