Lecture 15: Algebraic Methods for Nonlinear Control Systems

Juri Belikov

December 12, 2014,
Department of Computer Control, Tallinn University of Technology,

Tallinn, Estonia

Overview of the talk

- Algebraic framework: basic definitions and constructions
- Polynomial framework
- One nonlinear control problem: Realizability
- Concluding remarks

Two common theories to study nonlinear control systems

- Differential geometrical approach: appeared in the 1970 s
A. Isidori, H. Nijmeijer, W. Respondek, A. van der Schaft, etc.
- Algebraic methods of differential forms: start from the second half of 1980s
G. Conte, M. Fliess, Ü. Kotta, C. H. Moog, A. M. Perdon, etc.

Differential Algebra

Calculus and Topology:
Ordinary differentiation and exterior derivative

Algebra:
rings, fields, etc.

Basic definitions: Calculus

Definition (Differentiability)

A real function is said to be differentiable at a point if its derivative exists at that point.

Definition (Derivative)

The derivative of a function $f(x)$ with respect to the variable x is defined as

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Proposition

If $f(x)$ is differentiable at a point x_{0}, then f is continuous at x_{0}.
Example: Function $f(x)=|x|$ is continuous at 0 , but not differentiable.

Analytic and meromorphic functions

Definition

Analytic function $f(x)$ is an infinitely differentiable function such that the Taylor series at any point x_{0} in its domain D converges to $f(x)$ for x in a neighborhood of x_{0} point-wise (and uniformly).

Examples: polynomial functions $f(x)=x^{2}-3 x+1$, exponential function $f(x)=\mathrm{e}^{x}$, trigonometric functions $f_{1}(x)=\cos x$, $f_{2}(x)=\tanh (3 x)$.

Definition

If I is an open subset and f is a function defined and analytic in I except for poles, then f is a meromorphic function on I.

Examples: rational functions $f(x)=\frac{x^{2}-1}{x^{3}+2 x-1}$, Gamma function $\Gamma(z)=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} \mathrm{~d} t$, Riemann Zeta function $\zeta(s)=\sum_{k=1}^{\infty} k^{-s}$.

Analytic functions \subset Smooth functions $\left(C^{\infty}\right)$

Analytic functions: more details

Definition

Let $I \subseteq \mathbb{R}$ be an open interval. A function $f: I \rightarrow \mathbb{R}$ is analytic at a point $x_{0} \in I$ if it admits a Taylor series expansion in a neighborhood of x_{0}. If f is analytic at every point of $I \subseteq \mathbb{R}$, we say that f is analytic in I.

Proposition

Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \rightarrow \mathbb{R}$ be an analytic function on I, then either
(1) $f \equiv 0$ in I, or
(2) the zeros of f in I are isolated.

Non-analytic functions: Illustrative example

The function $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{lll}
\sin (1 / x), & \text { if } & x \neq 0 \\
0, & \text { if } & x=0
\end{array}\right.
$$

is not analytic because the point $x=0$ is a point of accumulation for the zeros of f.

Fig. 1.2. Graph of $\sin (1 / x)$

Basic algebraic structures

A ring is a set \mathcal{R} together with two binary operators + and $*$ satisfying conditions:
(1) Additive associativity: For all $a, b, c \in \mathcal{R},(a+b)+c=a+(b+c)$;
(2) Additive commutativity: For all $a, b \in \mathcal{R}, a+b=b+a$;
(3) Additive identity: There exists an element $0 \in \mathcal{R}$ such that for all $a \in \mathcal{R}$, $0+a=a+0=a ;$
(9) Additive inverse: For every $a \in \mathcal{R}$ there exists $-a \in \mathcal{R}$ such that $a+(-a)=(-a)+a=0$;
(5) Left and right distributivity: For all $a, b, c \in \mathcal{R}, a *(b+c)=(a * b)+(a * c)$ and $(b+c) * a=(b * a)+(c * a)$;
(0) Multiplicative associativity: For all $a, b, c \in \mathcal{R},(a * b) * c=a *(b * c)$ (a ring satisfying this property is sometimes explicitly termed an associative ring);
(7) Multiplicative commutativity: For all $a, b \in \mathcal{R}, a * b=b * a$ (a ring satisfying this property is termed a commutative ring);
(8) Multiplicative identity: There exists an element $1 \in \mathcal{R}$ such that for all $a \neq 0 \in \mathcal{R}, 1 * a=a * 1=a$ (a ring satisfying this property is termed a unit ring, or sometimes a ring with identity);
(9) Multiplicative inverse: For each $a \neq 0 \in \mathcal{R}$, there exists an element $a^{-1} \in \mathcal{R}$ such that for all $a \neq 0 \in \mathcal{R}, a * a^{-1}=a^{-1} * a=1$, where 1 is the identity element.

Basic algebraic structures: Summary

Prop. \#	Ring	Commutative ring	Division ring / Skew field	Field
$\mathbf{1}$	\checkmark	\checkmark	\checkmark	\checkmark
$\mathbf{2}$	\checkmark	\checkmark	\checkmark	\checkmark
$\mathbf{3}$	\checkmark	\checkmark	\checkmark	\checkmark
$\mathbf{4}$	\checkmark	\checkmark	\checkmark	\checkmark
$\mathbf{5}$	\checkmark	\checkmark	\checkmark	\checkmark
$\mathbf{6}$	\times / \checkmark	\checkmark	\checkmark	\checkmark
$\mathbf{7}$	x	\checkmark	\checkmark	\checkmark
$\mathbf{8}$	x	\checkmark	\checkmark	\checkmark
$\mathbf{9}$	x	x	\checkmark	\checkmark

Control system

A car example

Control system

reference
desired output

$$
\begin{array}{cc}
\text { input } & \text { output } \\
\text { gas pedal/wheel/etc. } & \text { distance/speed/etc. }
\end{array}
$$

closed loop

Input-output and state-space forms: single-input single-output systems

Notation: the first- and second-order derivatives are $\dot{\xi}:=\frac{\mathrm{d} \xi}{\mathrm{d} t}, \ddot{\xi}:=\frac{\mathrm{d}^{2} \xi}{\mathrm{~d} t^{2}}$, and $\xi^{(k)}:=\frac{\mathrm{d}^{k} \xi}{\mathrm{~d} t^{k}}$ stands to the time derivative of an arbitrary order.

Input-output equation

$$
y^{(n)}=\phi\left(y, \dot{y}, \ldots, y^{(n-1)}, u, \dot{u}, \ldots, u^{(s)}\right)
$$

State equations

$$
\begin{aligned}
& \dot{x}=f(x, u) \\
& y=h(x)
\end{aligned}
$$

$x \in \mathbb{R}^{n}$ is the vector of state variables,
$u: \in \mathbb{R}$ is the input signals, $y: \in \mathbb{R}$ is the output signal, f and h are meromorphic functions.

Ring of analytic functions \mathcal{R}

Let \mathcal{R} denote the ring of analytic functions in a finite number of variables from the set a finite number of independent system variables from the infinite set

$$
\mathcal{C}_{s s}=\left\{x_{i}, i=1, \ldots, n ; u^{(k)}, k \geq 0\right\}
$$

or

$$
\mathcal{C}_{i o}=\left\{y, y^{(1)}, \ldots, y^{(n-1)}, u^{(k)}, k \geq 0\right\} .
$$

$\mathcal{C}_{\text {ss }}$ is associated to the state-space form
$\mathcal{C}_{i o}$ is associated to the input-output description

Differential ring

Define a time derivative operator $\mathrm{d} / \mathrm{d} t: \mathcal{R} \rightarrow \mathcal{R}$ as

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} x=f(x, u), \quad \frac{\mathrm{d}}{\mathrm{~d} t} u_{j}^{(k)}=u_{j}^{(k+1)}, \\
\frac{\mathrm{d}}{\mathrm{~d} t} \zeta\left(x, u^{(k)}\right)=\sum_{i=1}^{n} \frac{\partial \zeta}{\partial x_{i}} \frac{\mathrm{~d}}{\mathrm{~d} t} x_{i}+\sum_{k \geq 0} \frac{\partial \zeta}{\partial u^{(k)}} \frac{\mathrm{d}}{\mathrm{~d} t} u^{(k)},
\end{gathered}
$$

or as

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} y^{(n-1)} & =\phi(\cdot), \quad \frac{\mathrm{d}}{\mathrm{~d} t} y^{(I)}=y^{(I+1)}, \text { for } I=0, \ldots, n-2, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} u^{(k)} & =u^{(k+1)}, \\
\frac{\mathrm{d}}{\mathrm{~d} t} \xi\left(y^{(I)}, u^{(k)}\right) & =\sum_{l=0}^{n-1} \frac{\partial \xi}{\partial y^{(I)}} \frac{\mathrm{d}}{\mathrm{~d} t} y^{(I)}+\sum_{k \geq 0} \frac{\partial \xi}{\partial u^{(k)}} \frac{\mathrm{d}}{\mathrm{~d} t} u^{(k)} .
\end{aligned}
$$

The pair ($\mathcal{R}, \mathrm{d} / \mathrm{d} t)$ forms an algebraic structure known as a differential ring.

Differential ring: integral domain

A ring D is called an integral domain if it does not contain any zero divisors.

It means that if a and b are two elements of D such that $a b=0$, then either $a=0$ or $b=0$ or both.

The ring \mathcal{R} of analytic functions is integral domain.

Differential ring: integral domain

Remark: C^{∞} functions too form a ring, but it contains zero divisors.
Example: Consider two smooth functions defined as

$$
f_{1}(x)= \begin{cases}\mathrm{e}^{-\frac{1}{x^{2}}}, & \text { if } x<0, \\ 0, & \text { if } x \geq 0\end{cases}
$$

and

$$
f_{2}(x)= \begin{cases}0, & \text { if } x \leq 0, \\ e^{-\frac{1}{x^{2}}}, & \text { if } x>0\end{cases}
$$

whose product is identically zero.

Field of meromorphic functions \mathcal{K}

Construction:
(1) Let \mathcal{S} be multiplicative subset of \mathcal{R}.
(2) Consider the set of fractions of \mathcal{R} over \mathcal{S}, denoted as $\mathcal{K}:=\mathcal{S}^{-1} \mathcal{R}$.
(3) Elements of \mathcal{K} are meromorphic functions of the form $\beta^{-1} \alpha$, where $\alpha \in \mathcal{R}, \beta \in \mathcal{S}$.
(4) Since \mathcal{R} is integral domain, \mathcal{K} forms an algebraic structure known as a field of fractions (quotient field).

General idea: The field of fractions \mathcal{K} of an integral domain \mathcal{R} is the smallest field containing \mathcal{R}, since it is obtained from \mathcal{R} by adding the least needed to make \mathcal{R} a field, namely the possibility of dividing by any nonzero element.

Differential field

The operator $\mathrm{d} / \mathrm{d} t$ can be extended so that $\mathrm{d} / \mathrm{d} t: \mathcal{K} \rightarrow \mathcal{K}$. For $b^{-1} a \in \mathcal{K}$ we define

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(b^{-1} a\right):=\left(b^{2}\right)^{-1}(\dot{a} b-a \dot{b}), a \in \mathcal{R}, b \in \mathcal{S} .
$$

The pair $(\mathcal{K}, \mathrm{d} / \mathrm{d} t)$ is a differential field.

Differential vector space \mathcal{E}

Consider next the infinite set of symbols

$$
\mathrm{d} \mathcal{C}_{s s}=\left\{\mathrm{d} x_{i}, i=1, \ldots, n ; \mathrm{d} u^{(k)}, k \geq 0\right\}
$$

or

$$
\mathrm{d} \mathcal{C}_{i o}=\left\{\mathrm{d} y, \mathrm{~d} y^{(1)}, \ldots, \mathrm{d} y^{(n-1)} i=1, \ldots, n ; \mathrm{d} u^{(k)}, k \geq 0\right\}
$$

and denote by \mathcal{E} the differential vector space spanned over the field \mathcal{K} by the elements of $d \mathcal{C}$, i.e.

$$
\mathcal{E}:=\operatorname{span}_{\mathcal{K}}\{\mathrm{d} \mathcal{C}\} .
$$

Differential forms

Any element of \mathcal{E} has the form

$$
\omega=\sum_{i=1}^{n} \alpha_{i} \mathrm{~d} x_{i}+\sum_{k \geq 0} \beta_{k} \mathrm{~d} u^{(k)}
$$

or

$$
\omega=\sum_{i=1}^{n} \alpha_{i} \mathrm{~d} y^{(i)}+\sum_{k \geq 0} \beta_{k} \mathrm{~d} u^{(k)}
$$

where $\alpha_{i}, \beta_{k} \in \mathcal{K}$ and only a finite number of coefficients β_{k} are nonzero.
The elements of \mathcal{E} are called the differential one-forms.

Differential forms

Operators d and $\mathrm{d} / \mathrm{d} t$ in \mathcal{E}

The differential operator $\mathrm{d}: \mathcal{K} \rightarrow \mathcal{E}$ is defined as

$$
\mathrm{d} \zeta\left(x, u^{(k)}\right)=\sum_{i=1}^{n} \frac{\partial \zeta}{\partial x_{i}} \mathrm{~d} x_{i}+\sum_{k \geq 0} \frac{\partial \zeta}{\partial u^{(k)}} \mathrm{d} u^{(k)}
$$

or

$$
\mathrm{d} \xi\left(y^{(l)}, u^{(k)}\right)=\sum_{l=0}^{n-1} \frac{\partial \xi}{\partial y^{(l)}} \mathrm{d} y^{(l)}+\sum_{k \geq 0} \frac{\partial \xi}{\partial u^{(k)}} \mathrm{d} u^{(k)}
$$

For the one-form $\omega=\lambda_{i} \mathrm{~d} \varphi_{i}$, where $\lambda_{i} \in \mathcal{K}$ and $\varphi_{i} \in \mathcal{C}$, the operator $\mathrm{d} / \mathrm{d} t: \mathcal{E} \rightarrow \mathcal{E}$ is defined as

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\sum_{l} \lambda_{l} \mathrm{~d} \varphi_{l}\right):=\sum_{l}\left(\dot{\lambda}_{l} \mathrm{~d} \varphi_{l}+\lambda_{l} \mathrm{~d} \dot{\varphi}_{I}\right)
$$

Remark: Operators d and $\mathrm{d} / \mathrm{d} t$ commute, i.e. for $\varphi \in \mathcal{K}$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathrm{~d} \varphi)=\mathrm{d}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \varphi\right)=\mathrm{d} \dot{\varphi} .
$$

Differential forms

Example: Let $F=\sin \left(x_{1} x_{2}\right) \in \mathcal{K}$. Then differentiating F with respect to x_{1} and x_{2}, we get

$$
\mathrm{d} F=\cos \left(x_{1} x_{2}\right) x_{2} \mathrm{~d} x_{1}+\cos \left(x_{1} x_{2}\right) x_{1} \mathrm{~d} x_{2}=\cos \left(x_{1} x_{2}\right)\left[x_{2} \mathrm{~d} x_{1}+x_{1} \mathrm{~d} x_{2}\right]
$$

with $\mathrm{d} F \in \mathcal{E}$.

Differential forms

Two-forms: exterior derivative and wedge product

Starting from the space \mathcal{E} it is possible to build up the structures used in exterior differential calculus. Define the set $\wedge \mathrm{d} \mathcal{C}=\{\mathrm{d} \zeta \wedge \mathrm{d} \eta \mid \zeta, \eta \in \mathcal{C}\}$, where \wedge denotes the wedge product with the standard properties

$$
\mathrm{d} \zeta \wedge \mathrm{~d} \eta=-\mathrm{d} \eta \wedge \mathrm{~d} \zeta \quad \text { and } \quad \mathrm{d} \zeta \wedge \mathrm{~d} \zeta=0
$$

for $\zeta, \eta \in \mathcal{C}$.
Introduce the space $\mathcal{E}^{2}=\operatorname{span}_{\mathcal{K}} \wedge \mathrm{d} \mathcal{C}$ with elements being two-forms.
The operator $\mathrm{d}: \mathcal{E} \rightarrow \mathcal{E}^{2}$, called exterior derivative operator, is defined for $\omega=\sum_{\ell=1}^{k} \alpha_{\ell}\left(\zeta_{1}, \ldots, \zeta_{k}\right) \mathrm{d} \zeta_{\ell} \in \mathcal{E}$, where $\zeta_{1}, \ldots, \zeta_{k} \in \mathcal{C}$, by the rule

$$
\mathrm{d} \omega:=\sum_{\ell, \ell^{\prime}} \frac{\partial \alpha_{\ell}}{\partial \zeta_{\ell^{\prime}}} \mathrm{d} \zeta_{\ell} \wedge \mathrm{d} \zeta_{\ell^{\prime}} .
$$

Differential forms

Example: Let $\omega=\mathrm{d} x_{1}-\frac{x_{1}}{x_{2}} \mathrm{~d} x_{2}$, then

$$
\begin{aligned}
& \mathrm{d} \omega=\mathrm{d}\left[\mathrm{~d} x_{1}-\frac{x_{1}}{x_{2}} \mathrm{~d} x_{2}\right]=\underbrace{\mathrm{d}\left[\mathrm{~d} x_{1}\right]}_{=0}-\mathrm{d}\left[\frac{x_{1}}{x_{2}} \mathrm{~d} x_{2}\right] \\
&=-\frac{\partial}{\partial x_{1}}\left(\frac{x_{1}}{x_{2}}\right) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}-\frac{\partial}{\partial x_{2}}\left(\frac{x_{1}}{x_{2}}\right) \mathrm{d} x_{2} \wedge \mathrm{~d} x_{2} \\
& \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{2}=0 \\
&= \frac{1}{x_{2}} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}
\end{aligned}
$$

Remark: The notion of two-form can be generalized to the s-form and wedge product is defined for arbitrary s-forms.

Differential forms

Closed and exact forms

Definition

A one-form $\omega \in \mathcal{E}$ is closed, if $\mathrm{d} \omega=0$.

Definition

A one-form $\omega \in \mathcal{E}$ is exact, if $\omega=\mathrm{d} \zeta$ for some $\zeta \in \mathcal{K}$.

Proposition
 Any exact one-form is closed.

Differential forms

Lemma (Poincaré's Lemma)

Let ω be a closed one-form in \mathcal{E}. Then there exists $\varphi \in \mathcal{K}$ such that locally $\omega=\mathrm{d} \varphi$.

Example: Consider a closed one-form

$$
\omega=\frac{x_{2}}{x_{1}^{2}+x_{2}^{2}} \mathrm{~d} x_{1}-\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} \mathrm{~d} x_{2} .
$$

Locally around points

- $\left(x_{1}, x_{2}\right)$ such that $x_{2} \neq 0$, we get $\omega=\mathrm{d}\left[\arctan \left(x_{1} / x_{2}\right)\right]$;
- $\left(x_{1}, x_{2}\right)$ such that $x_{1} \neq 0$ and $x_{2}=0$, we get $\omega=\mathrm{d}\left[\arctan \left(-x_{2} / x_{1}\right)\right]$.

However, there is no function φ such that $\omega=\mathrm{d} \varphi$ globally.

Frobenius theorem

Definition

A subspace $\Omega \subset \mathcal{E}$ is closed or integrable, if Ω has a basis which consists only of closed forms.

Theorem

Let $\Omega=\operatorname{span}_{\mathcal{K}}\left\{\omega_{1}, \ldots, \omega_{\kappa}\right\}$. The subspace Ω is integrable if and only if

$$
\mathrm{d} \omega_{i} \wedge \omega_{1} \wedge \cdots \wedge \omega_{\kappa}=0
$$

for all $i=1, \ldots, \kappa$.

Frobenius theorem

Example: Consider the one-form $\omega=\mathrm{d} x_{1}+x_{1} \mathrm{~d} x_{2}$. To verify whether ω is closed or not we need to find the exterior derivative as

$$
\begin{aligned}
\mathrm{d} \omega=\mathrm{d}\left[\mathrm{~d} x_{1}+x_{1} \mathrm{~d} x_{2}\right] & =\underbrace{\mathrm{d}\left[\mathrm{~d} x_{1}\right]}_{=0}+\mathrm{d}\left[x_{1} \mathrm{~d} x_{2}\right] \\
& =\frac{\partial x_{1}}{\partial x_{1}} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}+\frac{\partial x_{1}}{\partial x_{2}} \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{2}=\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} .
\end{aligned}
$$

Therefore, ω is not closed since $\mathrm{d} \omega \neq 0$.
However, the vector space $\operatorname{span}_{\mathcal{K}}\{\omega\}$ is integrable since

$$
\begin{aligned}
\mathrm{d} \omega \wedge \omega=\mathrm{d} x_{1} \wedge \mathrm{~d} & x_{2} \\
& \wedge\left(\mathrm{~d} x_{1}+x_{1} \mathrm{~d} x_{2}\right) \\
& =\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{1}+x_{1} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{2}{ }^{\mathrm{d} x_{i} \wedge \mathrm{~d} x_{i}=0}=
\end{aligned}
$$

Finally, if we choose the integrating factor $\alpha=1 / x_{1}$, then ω becomes integrable and $F=\ln \left|x_{1}\right|+x_{2}$.

Sequence \mathcal{H}_{k}

A sequence of subspaces
$\mathcal{H}_{0} \supset \cdots \supset \mathcal{H}_{k^{*}} \supset \mathcal{H}_{k^{*}+1}=\mathcal{H}_{k^{*}+2}=\cdots=: \mathcal{H}_{\infty}$ of \mathcal{E} is defined by

$$
\begin{aligned}
& \mathcal{H}_{0}=\operatorname{span}_{\mathcal{K}}\left\{\mathrm{dx}_{1}, \ldots, \mathrm{~d} x_{n}, \mathrm{~d} u\right\}, \\
& \mathcal{H}_{k}=\left\{\omega \in \mathcal{H}_{k-1} \mid \dot{\omega} \in \mathcal{H}_{k-1}\right\}, \quad k \geq 1,
\end{aligned}
$$

or

$$
\begin{aligned}
\mathcal{H}_{1} & =\operatorname{span}_{\mathcal{K}}\left\{\mathrm{d} y, \ldots, \mathrm{~d} y^{(n-1)}, \mathrm{d} u, \ldots, \mathrm{~d} u^{(s)}\right\}, \\
\mathcal{H}_{k+1} & =\left\{\omega \in \mathcal{H}_{k} \mid \dot{\omega} \in \mathcal{H}_{k}\right\}, \quad k \geq 1 .
\end{aligned}
$$

Sequence \mathcal{H}_{k} plays an important role in the analysis of the structural properties of nonlinear systems.

Polynomial framework

Definition

A skew polynomial ring $\mathcal{A}[\partial ; \alpha, \beta]$ is a noncommutative polynomial ring in ∂ with coefficients in \mathcal{A} satisfying

$$
\forall a \in \mathcal{A}, \quad \partial a=\alpha(a) \partial+\beta(a) .
$$

Each polynomial $\pi \in \mathcal{A}[\partial ; \alpha, \beta]$ can be uniquely written in the form

$$
\pi=\sum_{\ell=0}^{k} \pi_{\ell} \partial^{k-\ell}, \quad \pi_{\ell} \in \mathcal{A}
$$

If $\pi_{0} \not \equiv 0$, then k is called the degree of π, denoted by $\operatorname{deg}(\pi)$.

Polynomial framework

Several special cases:

- Ring of differential operators: $\mathcal{A}\left[\partial ; \mathrm{id}, \frac{\mathrm{d}}{\mathrm{d} t}\right]$.
- Ring of shift operators: $\mathcal{A}[\partial ; \sigma, 0], \mathcal{A}[\partial ; \delta, 0]$.
- Ring of difference operators: $\mathcal{A}[\partial ; \tau, \tau-\mathrm{id}]$ with $\tau a(x)=a(x+1)$.

Definition

The skew polynomial ring, induced by ($\mathcal{K}, \mathrm{d} / \mathrm{d} t$), is the ring $\mathcal{K}\left[\partial ; \mathrm{id}{ }_{\mathcal{K}}, \mathrm{d} / \mathrm{d} t\right]:=\mathcal{K}[\partial ; \mathrm{d} / \mathrm{d} t]$ of polynomials with usual addition and multiplication satisfying, for any $\varsigma \in \mathcal{K} \subset \mathcal{K}[\partial ; \mathrm{d} / \mathrm{d} t]$, the commutation rule

$$
\partial \varsigma:=\varsigma \partial+\dot{\varsigma} .
$$

Polynomial framework

Commutation rule: examples

Example 1: Consider multiplication of two polynomials $p(\partial)=\partial^{2}+1$ and $q(\partial)=y \partial-1$

$$
\begin{aligned}
p(\partial) q(\partial) & =\left(\partial^{2}+1\right)(y \partial-1)=\partial^{2} y \partial-\partial^{2}+y \partial-1 \\
& =\partial\left(y \partial^{2}+\dot{y} \partial\right)-\partial^{2}+y \partial-1 \\
& =y \partial^{3}+\dot{y} \partial^{2}+\dot{y} \partial^{2}+\ddot{y} \partial-\partial^{2}+y \partial-1 \\
& =y \partial^{3}+(2 \dot{y}-1) \partial^{2}+(\ddot{y}+y) \partial-1
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \partial \cdot(y+u+1)=y \partial+\dot{y}+u \partial+\dot{u}, \\
& (y+u+1) \cdot \partial=y \partial+u \partial+\partial .
\end{aligned}
$$

Polynomial framework

- Recall that $\mathcal{K}[\partial ; \mathrm{d} / \mathrm{d} t]$ is the skew polynomial ring, where ∂ is a polynomial indeterminate. Multiplication in $\mathcal{K}[\partial ; \mathrm{d} / \mathrm{d} t]$ is defined by the commutation rule $\partial \varsigma=\varsigma \partial+\dot{\varsigma}, \alpha \in \mathcal{K}$.
- Polynomial system description

$$
y^{(n)}=\phi\left(y, \dot{y}, \ldots, y^{(n-1)}, u, \dot{u}, \ldots, u^{(s)}\right)
$$

$$
\begin{gathered}
\hline \begin{array}{c}
\partial^{i} \mathrm{~d} y:=\mathrm{d} y^{(i)} \\
\partial^{j} \mathrm{~d} u:=\mathrm{d} u^{(j)}
\end{array} \\
{\left[\begin{array}{c}
\left.\partial^{n}-\sum_{i=0}^{n-1} p_{i} \partial^{i}\right] \mathrm{d} y-\sum_{j=0}^{s} q_{j} \partial^{j} \mathrm{~d} u=0 \\
p_{i}=\frac{\partial \phi}{\partial y^{(i)}} \\
p(\partial) \mathrm{d} y+q(\partial) \mathrm{d} u=0
\end{array}\right.} \\
q_{j}=\frac{\partial \phi}{\partial u^{(i)}} \\
\hline
\end{gathered}
$$

Polynomial framework

Polynomial system description: Example

Consider the nonlinear system

$$
\ddot{y}=\dot{u} y+u^{2} \dot{y} .
$$

Define $\phi:=\dot{u} y+u^{2} \dot{y}$ and differentiate it with respect to y, \dot{y}, u and \dot{u}

$$
\begin{array}{ll}
p_{0}=\frac{\partial \phi}{\partial y}=\dot{u}, & p_{1}=\frac{\partial \phi}{\partial \dot{y}}=u^{2}, \\
q_{0}=\frac{\partial \phi}{\partial u}=2 u \dot{y}, & q_{1}=\frac{\partial \phi}{\partial \dot{u}}=y .
\end{array}
$$

Using relations $\partial^{i} \mathrm{~d} y:=\mathrm{d} y^{(i)}$ and $\partial^{j} \mathrm{~d} u:=\mathrm{d} u^{(j)}$, we get

$$
\left(\partial^{2}-u \partial-\dot{u}\right) \mathrm{d} y-(y \partial+2 u \dot{y}) \mathrm{d} u=0 .
$$

Algebraic and polynomial formalism: Summary

Actual picture

Problem statement

$$
y^{(n)}=\phi\left(y, \dot{y}, \ldots, y^{(n-1)}, u, \dot{u}, \ldots, u^{(s)}\right)
$$

Goal:

Find, if possible, the state coordinates $x(t) \in \mathbb{R}^{n}$ such that in these coordinates the system takes the minimal state-space form.

Definition

The state-space description is said to be realization of the i / o equation if both equations have the same solution sets $\{(u(t), y(t)), t \geq 0\}$.

State of the Art

- Some of the existing results are based:
- on the sequence of distributions of vector fields
A. J. van der Shaft, 1987
- on the iterative Lie brackets of the vector fields
E. Delaleau and W. Respondek, 1995
- on the sequence of the subspaces of differential one-forms
G. Conte, C. H. Moog, and A. M. Perdon, 2007
- on polynomial framework

Ü. Kotta, M. Tõnso, and J. Belikov, 2009-.

- Polynomial approach:
- System is described by two polynomials from the skew polynomial ring
- Solution in terms of polynomials \Rightarrow explicit formulas
- More transparent and simple \Rightarrow easy to implement in symbolic software
- Similar to the linear case \Rightarrow easier to understand

Realizability

Recall that the sequence of subspaces $\left\{\mathcal{H}_{k}\right\}_{k=1}^{\infty}$ of \mathcal{E} is defined as

$$
\begin{aligned}
\mathcal{H}_{1} & =\operatorname{span}_{\mathcal{K}}\left\{\mathrm{d} y, \ldots, \mathrm{~d} y^{(n-1)}, \mathrm{d} u, \ldots, \mathrm{~d} u^{(s)}\right\}, \\
\mathcal{H}_{k+1} & =\left\{\omega \in \mathcal{H}_{k} \mid \dot{\omega} \in \mathcal{H}_{k}\right\}, \quad k \geq 1 .
\end{aligned}
$$

Theorem

The nonlinear i/o equation has an observable state-space realization if and only if the subspace \mathcal{H}_{s+2} is integrable.

Corollary

The state coordinates can be obtained by integrating the exact basis vectors of \mathcal{H}_{s+2}.

Realization algorithm: general idea

Computation of \mathcal{H}_{s+2} : polynomial method

Subspace \mathcal{H}_{s+2} can be calculated as

$$
\mathcal{H}_{s+2}=\operatorname{span}_{\mathcal{K}}\left\{\omega_{1}, \ldots, \omega_{n}\right\},
$$

where

$$
\omega_{l}=\left[\begin{array}{ll}
p_{l}(\partial) & q_{l}(\partial)
\end{array}\right]\left[\begin{array}{l}
\mathrm{d} y \\
\mathrm{~d} u
\end{array}\right],
$$

for $I=1, \ldots, n$, and $p_{l}(\partial)$ and $q_{l}(\partial)$ can be recursively calculated from the equalities

$$
\begin{array}{lll}
p_{I-1}(\partial) & =\partial p_{l}(\partial)+\xi_{l}, & \operatorname{deg} \xi_{l}=0, \\
q_{I-1}(\partial) & =\partial q_{l}(\partial)+\gamma_{l}, & \operatorname{deg} \gamma_{I}=0
\end{array}
$$

with the initial polynomials $p_{0}(\partial):=p(\partial)$ and $q_{0}(\partial):=q(\partial)$.

Illustrative examples

Realizable system

Consider the nonlinear i/o system

$$
\ddot{y}=\dot{u} \dot{y}+u y
$$

that can be described by two polynomials

$$
p(\partial)=\partial^{2}-\dot{u} \partial-u \quad \text { and } \quad q(\partial)=-y \partial-u .
$$

Calculate two sequences of the left quotients as: $p_{1}(\partial)=\partial-\dot{u}, p_{2}=1$, and $q_{1}(\partial)=-\dot{y}, q_{2}=0$. Then, the one-forms are

$$
\begin{aligned}
& \omega_{1}=p_{1}(\partial) \mathrm{d} y+q_{1}(\partial) \mathrm{d} u=(\partial-\dot{u}) \mathrm{d} y-\dot{y} \mathrm{~d} u=\mathrm{d} \dot{y}-\dot{u} \mathrm{~d} y-\dot{y} \mathrm{~d} u, \\
& \omega_{2}=p_{2}(\partial) \mathrm{d} y+q_{2}(\partial) \mathrm{d} u=\mathrm{d} y,
\end{aligned}
$$

and the subspace $\mathcal{H}_{s+2}=\mathcal{H}_{3}=\operatorname{span}_{\mathcal{K}}\{\mathrm{d} y, \mathrm{~d} \dot{y}-\dot{y} \mathrm{~d} u\}$ is integrable. The choice $x_{1}=y, x_{2}=e^{-u \dot{y}}$ yields the state equations

$$
\begin{aligned}
\dot{x}_{1} & =e^{u} x_{2} \\
\dot{x}_{2} & =e^{-u} u x_{1} \\
y & =x_{1} .
\end{aligned}
$$

Illustrative examples (cont.)

Non-realizable system
Consider the " ball and beam" system

$$
\begin{equation*}
\ddot{y}=\frac{m R^{2}}{J+m R^{2}}\left(y \dot{u}^{2}-g \sin (u)\right), \tag{1}
\end{equation*}
$$

where J, R, m, g are some physical parameters. The i/o equation can be described in polynomial form as

$$
p(\partial)=\partial^{2}-\frac{m R^{2} \dot{u}^{2}}{J+m R^{2}} \quad \text { and } \quad q(\partial)=-\frac{2 m R^{2} y \dot{u}}{J+m R^{2}} \partial+\frac{g m R^{2} \cos (u)}{J+m R^{2}} .
$$

Compute the left quotients as: $p_{1}(\partial)=\partial, p_{2}(\partial)=1$ and $q_{1}(\partial)=-\frac{2 m R^{2}}{J+m R^{2}} y \dot{u}, q_{2}(\partial)=0$. Then, we get
$\mathcal{H}_{3}=\operatorname{span}_{\mathcal{K}}\left\{\omega_{1}, \omega_{2}\right\}=\operatorname{span}_{\mathcal{K}}\left\{\mathrm{d} y, \mathrm{~d} \dot{y}-\frac{2 m R^{2}}{J+m R^{2}} y \dot{u} \mathrm{~d} u\right\}$, which by the Frobenius theorem is not closed, since

$$
\mathrm{d} \omega_{2} \wedge \omega_{1} \wedge \omega_{2}=\frac{2 m R^{2}}{J+m R^{2}} y \dot{u} \mathrm{~d} u \wedge \mathrm{~d} \dot{u} \wedge \mathrm{~d} y \wedge \mathrm{~d} \dot{y} \neq 0 .
$$

Therefore, the i / o equation does not admit the minimal state-space realization.

Realization: open problems

Remark:

- The realizability conditions are constructive and can be checked using \mathcal{H}_{s+2}.
- To find the state coordinates, one has to integrate the differential one-forms. The integration of (integrable in principle) differential one-forms is known to be a difficult task, in general.
- Theorem (realizability) does not define explicitly the class of i / o equations that have state-space form.

Therefore, the alternative way to tackle the realization problem is to single out the realizable structures for low-order i/o equations as well as
to understand what can happen in case of arbitrary order, suggesting some subclasses of general order.

0000000

Realization: open problems

Second-order system

Consider the second-order i/o equation

$$
\ddot{y}=\phi(y, \dot{y}, u, \dot{u})
$$

that can be described by two polynomials

$$
p(\partial)=\partial^{2}-\frac{\partial \phi}{\partial \dot{y}} \partial-\frac{\partial \phi}{\partial y}
$$

and

$$
q(\partial)=-\frac{\partial \phi}{\partial \dot{u}} \partial-\frac{\partial \phi}{\partial u} .
$$

Realization: open problems

Since $s=1$, we have to check the integrability of the subspace $\mathcal{H}_{3}=\operatorname{span}_{\mathcal{K}}\left\{\omega_{1}, \omega_{2}\right\}$, where

$$
\begin{aligned}
& \omega_{1}=p_{1}(\partial) \mathrm{d} y+q_{1}(\partial) \mathrm{d} u=\mathrm{d} \dot{y}-\frac{\partial \phi}{\partial \dot{u}} \mathrm{~d} u, \\
& \omega_{2}=p_{2}(\partial) \mathrm{d} y+q_{2}(\partial) \mathrm{d} u=\mathrm{d} y .
\end{aligned}
$$

The integrability can be checked using the Frobenius theorem, i.e. to check

$$
\mathrm{d} \omega_{i} \wedge \omega_{1} \wedge \cdots \wedge \omega_{\kappa}=0
$$

for all $i=1, \ldots, \kappa$.

The first condition $d \omega_{2} \wedge \omega_{1} \wedge \omega_{2}=0$ is trivially satisfied.

Realization: open problems

The second condition $d \omega_{1} \wedge \omega_{1} \wedge \omega_{2}=0$ can be represented as

$$
\mathrm{d}\left[\mathrm{~d} \dot{y}-\frac{\partial \phi}{\partial \dot{u}} \mathrm{~d} u\right] \wedge\left[\mathrm{d} \dot{y}-\frac{\partial \phi}{\partial \dot{u}} \mathrm{~d} u\right] \wedge \mathrm{d} y=0
$$

or

$$
\left.\left.\begin{array}{rl}
{\left[-\frac{\partial^{2} \phi}{\partial \dot{u} \partial y} \mathrm{~d} y\right.} & \wedge \mathrm{d} u-\frac{\partial^{2} \phi}{\partial \dot{u} \partial \dot{y}} \mathrm{~d} \dot{y}
\end{array}\right) \mathrm{~d} u-\frac{\partial^{2} \phi}{\partial \dot{u} \partial u} \mathrm{~d} u \wedge \mathrm{~d} u\right] .
$$

Realization: open problems

Using the basic properties of the exterior product $\mathrm{d} \zeta \wedge \mathrm{d} \zeta=0$ and $\mathrm{d} \varepsilon \wedge \mathrm{d} \eta=-\mathrm{d} \eta \wedge \mathrm{d} \varepsilon$, the above condition can be simplified as

$$
-\frac{\partial^{2} \phi}{\partial \dot{u} \partial \dot{u}} \mathrm{~d} u \wedge \mathrm{~d} \dot{u} \wedge \mathrm{~d} y \wedge \mathrm{~d} \dot{y}=0
$$

From the above equation, we get the partial differential equation

$$
\frac{\partial^{2} \phi}{\partial \dot{u} \partial \dot{u}}=0 .
$$

The solutions of equation the obtained PDE define the complete subclass of the second-order i/o equations to be realizable in the state-space form. One particular solution is:

$$
\phi=\phi_{1}(y, \dot{y}, u)+\phi_{2}(y, \dot{y}, u) \dot{u} .
$$

Realization: open problems

Third-order system

Consider the third-order i/o equation

$$
y^{(3)}=\phi(y, \dot{y}, \ddot{y}, u, \dot{u}, \ddot{u})
$$

Proceeding in the same manner as in case of the second-order i/o equation, we get the system of partial differential equations

$$
\left\{\begin{array}{l}
\phi_{\ddot{u} \ddot{u}}=0 \\
\phi_{\ddot{u} \dot{u}}+\phi_{\ddot{u}} \phi_{\ddot{u} \ddot{y}}=0 \\
\phi_{\dot{u} \dot{u}}-\phi_{\ddot{u} u}+2 \phi_{\ddot{u}} \phi_{\ddot{u} \ddot{y}}-\phi_{\ddot{u}} \phi_{\ddot{u} \dot{y}}-\left(\phi_{\dot{u}}+\phi_{\ddot{u}} \phi_{\ddot{y}}\right) \phi_{\ddot{u} \ddot{y}}+\phi_{\ddot{u}} \phi_{\ddot{u}} \phi_{\ddot{y} \ddot{y}}=0,
\end{array}\right.
$$

where $\phi_{\alpha \beta}=\frac{\partial^{2} \phi}{\partial \beta \partial \alpha}$ is used to denote the partial derivative of a function.

