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Lecture 10a

Introduction

One of the most important and successful applications of quantitative analysis to
solving business problems has been in the physical distribution of products, com-
monly referred to as transportation problems. Basically, the purpose is to min-
imize the cost of shipping goods from one location to another so that the needs of
each arrival area are met and every shipping location operates within its capacity.

Transportation problem

Transportation problems deal with the determination of a minimum-cost plan for
transporting a commodity from a number of sources to a number of destinations. To
be more specific, let there be m warehouses W1, . . . ,Wm that have the commodity
and n destinations (or consumers) D1, . . . , Dn that demand the commodity. At the
ith warehouse, i = 1, 2, . . . ,m, there are ai units of the commodity available. The
demand at the jth destination, j = 1, 2, . . . , n, is denoted by bj. The cost of trans-
porting one unit of the commodity from the ith warehouse to the jth destination
(route WiDj) is cij. Let xij be the numbers of the commodity that are being trans-
ported from the ith warehouse to the jth destination. Our problem is to determine
those xij that will minimize the overall transportation cost. An optimal solution xij
to the problem is called a transportation plan.

Warehouse Destination

Wm m n Dn

...
...

Wi i j Djxij(cij)
x i1

(c i1
)

x
in (cin )

...
...

W1 1 1 D1

Summarize some facts. The cost of transportation from Wi (i = 1, 2, . . . ,m) to Dj

(j = 1, 2, . . . , n) will be equal to

z = c11x11 + c12x12 + · · ·+ cmnxmn =
m∑
i=1

n∑
j=1

cijxij → min . (1)
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Note that it is not possible to export from the warehouse Wi more than ai:

x11 + x12 + · · ·+ x1n ≤ a1

x21 + x22 + · · ·+ x2n ≤ a2
...

xm1 + xm2 + · · ·+ xmn ≤ am

or shortly
n∑

j=1

xij ≤ ai, i = 1, 2, . . . ,m. (2)

Note that the consumer at destination Dj needs bj commodity or more:

x11 + x21 + · · ·+ xm1 ≥ b1

x12 + x22 + · · ·+ xm2 ≥ b2
...

x1n + x2n + · · ·+ xmn ≥ bn

or shortly
m∑
i=1

xij ≥ bj, j = 1, 2, . . . , n. (3)

With the help of the above information we can construct the following table

Warehouse
Destination

Reserve
D1 D2 · · · Dn

W1 c11 c12 · · · c1n a1

W2 c21 c22 · · · c2n a2
...

...
...

...
...

...

Wm cm1 cm2 · · · cmn am

Requirement b1 b2 · · · bn

Denote by b = b1 + b2 + · · · + bn the total requirement of commodities and by
a = a1 + a2 + · · ·+ am the total amount of available commodities.

Theorem 1. Transportation problem (1)-(3) is solvable if and only if b ≤ a.

Proof: Sufficiency : Let transportation problem (1)-(3) has a solution xij, i.e. con-
straints (2)-(3) are satisfied and show that b ≤ a holds.

Let l =
∑m

i=1

∑n
j=1 xij and bound it in two ways:

l =
m∑
i=1

n∑
j=1

xij =
m∑
i=1

(
n∑

j=1

xij

)
≤

m∑
i=1

ai = a
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and

l =
m∑
i=1

n∑
j=1

xij =
n∑

j=1

(
m∑
i=1

xij

)
≥

n∑
j=1

bj = b.

It is easy to observe that b ≤ l ≤ a.

Necessity : Suppose that b ≤ a holds, i.e. b
a
≤ 1 and show that there exists some fea-

sible solution. Consider point (x011, x
0
12, . . . , x

0
mn), where x0ij =

aibj
a

. Next, substitute
x0ij into inequalities (2)

n∑
j=1

x0ij =
n∑

j=1

aibj
a

=
ai
a

n∑
j=1

bj =
aib

a
= ai

b

a
≤ ai,

meaning that for each i the corresponding inequality in (2) holds. Analogously,
substitute x0ij into inequalities (3)

m∑
i=1

x0ij =
m∑
i=1

aibj
a

=
bj
a

m∑
i=1

ai =
bja

a
= bj,

meaning that (3) hold. As a result, we get that the point (x011, x
0
12, . . . , x

0
mn) is

a feasible solution, or alternatively that the set of feasible solutions is non-empty.
Note that if the set of feasible solutions is bounded and the objective function is
bounded from below, then there exists an optimal solution. The latter comes from
two observations. First, since xij ≥ 0 and

∑n
j=1 xij ≤ ai by (2), xij ≤ ai for each i, j.

Therefore, the set of feasible solutions is bounded. Second, z =
∑m

i=1

∑n
j=1 cijxij ≥

0. Thus, the objective function is bounded from below. �

Remark 1. If b > a, then the transportation problem is not solvable. In this case
one has to solve non-mathematical problem either to increase reserve of commodity,
or to decrease requirements.

Definition 1. If a = b, then transportation problem (1)-(3) is called balanced.

Remark 2. For the balanced transportation problem constraints (2) and (3) are of
the form

∑n
j=1 xij = ai and

∑m
i=1 xij = bj, respectively.

Remark 3. If the transportation problem is not in the balanced form, i.e. b < a,
then one may introduce a fictive destination Df with requirement bf = a− b, getting
the problem in the balanced form.

Example 1: Consider the transportation problem given by the following table

Warehouse
Destination

Reserve
D1 D2 D3 D4

W1 3 1 0 4 15

W2 1 2 5 2 20

W3 3 8 11 0 25

Requirement 10 10 15 20

3



Let us introduce the fictive destination Df in which a consumer needs 5 units of
goods. Since this destination is fictive, the transportation costs can be taken equal
to zero.

Warehouse
Destination

Reserve
D1 D2 D3 D4 Df

W1 3 1 0 4 0 15

W2 1 2 5 2 0 20

W3 3 8 11 0 0 25

Requirement 10 10 15 20 5

Basic theorems

In the case of an unbalanced model, i.e. the total demand is not equal to the total
supply, we can always add dummy source or dummy destination to complement the
difference. In the following, we only consider balanced transportation models. They
can be written as the following linear programming problem

z =
m∑
i=1

n∑
j=1

cijxij → min

subject to constraints

n∑
j=1

xij = ai 1 ≤ i ≤ m,

m∑
i=1

xij = bj 1 ≤ j ≤ n,

xij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(4)

where
∑m

i=1 ai =
∑n

j=1 bj.

Using the vector notations

x =
[
x11, . . . , x1n, x21, . . . , x2n, . . . , xm1, . . . , xmn

]T
,

c =
[
c11, . . . , c1n, c21, . . . , c2n, . . . , cm1, . . . , cmn

]T
,

b =
[
a1, . . . , am, b1, . . . , bn

]T
,

the transportation model can be rewritten using matrix notation

z = cTx→ min

Ax = b

x ≥ 0

Theorem 2. The rank of the matrix A is equal to n+m− 1.
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Proof: Let us find the rank of the matrix A using elementary operations. Present
matrix A in the table form

x11 x12 . . . x1n x21 x22 . . . x2n . . . xm1 xm2 . . . xmn b

(1) 1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0 a1

(2) 0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0 a2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(m) 0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1 am

(m+ 1) 1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0 b1

(m+ 2) 0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0 b2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(m+ n) 0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1 bn

Next, apply the operations R1 − Rm+1 − · · · − Rm+n + R2 + · · · + Rm and Rm+1 −
R2 − · · · −Rm. The new table becomes

x11 x12 . . . x1n x21 x22 . . . x2n . . . xm1 xm2 . . . xmn b

(1) 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0 ∗1
(2) 0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0 a2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(m) 0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1 am

(m+ 1) 1 0 · · · 0 0 −1 · · · −1 · · · 0 −1 · · · −1 ∗2
(m+ 2) 0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0 b2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

(m+ n) 0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1 bn

where ∗1 = a1 + · · ·+ am − b1 − · · · − bm = a− b = 0 and ∗2 = b1 − a2 − · · · − am.

Finally, we get the matrix

M =

(
θmn Em,m−1
Enn θn,m−1

)

Now, it is easy to see that |M | 6= 0 and rank|M | = m+ n− 1. �

Dual problem of the balanced transportation problem: Notice that there
are m + n variables y1, y2, . . . , ym+n. Denote them by y1 = u1, y2 = u2, . . . , ym =
um, ym+1 = v1, ym+2 = v2, . . . , ym+n = vn. Then the dual transportation problem
can be written as

w =
m∑
i=1

aiui +
n∑

j=1

bjvj → max
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subject to constraints

ui + vj ≤ cij 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Remark 4. By Theorem 2 the rank of the matrix A for both primal and dual prob-
lems is equal to m+ n− 1.

It is interesting to note that

Primal problem: The total number of variables is mn. There are m+n− 1 basic
variables and mn− (m+ n− 1) free variables.

Dual problem: The total number of variables is m+n. There are m+n− 1 basic
variables and m+ n− (m+ n− 1) = 1 free variable.

Theorem 3. The feasible solutions (x∗11, x
∗
12, . . . , x

∗
1n, . . . , x

∗
m1, x

∗
m2, . . . , x

∗
mn) and

(u∗1, u
∗
2, . . . , u

∗
m, v

∗
1, v

∗
2, . . . , v

∗
n) of the balanced primal and dual transportation prob-

lems, respectively, are optimal solutions if and only if

(cij − (u∗i + v∗j ))x∗ij = 0 (5)

for each i = 1, . . . ,m and j = 1, . . . , n.

Proof: Note that (x∗11, x
∗
12, . . . , x

∗
1n, . . . , x

∗
m1, x

∗
m2, . . . , x

∗
mn) is a feasible solution of

the primal transportation problem, meaning that
∑n

j=1 x
∗
ij = ai and

∑m
i=1 x

∗
ij =

bj; (u∗1, u
∗
2, . . . , u

∗
m, v

∗
1, v

∗
2, . . . , v

∗
n) is a feasible solution of the dual transportation

problem, meaning that u∗i + v∗j ≤ cij.

Sufficiency : Suppose that (x∗11, . . . , x
∗
1n, . . . , x

∗
m1, . . . , x

∗
mn) and (u∗1, . . . , u

∗
m, v

∗
1, . . . , v

∗
n)

are optimal solutions

zmin =
m∑
i=1

n∑
j=1

cijx
∗
ij,

wmax =
m∑
i=1

aiu
∗
i +

n∑
j=1

bjv
∗
j =

m∑
i=1

(
n∑

j=1

x∗ij

)
u∗i +

n∑
j=1

(
m∑
i=1

x∗ij

)
v∗j =

m∑
i=1

n∑
j=1

u∗ix
∗
ij +

m∑
i=1

n∑
j=1

v∗jx
∗
ij =

m∑
i=1

n∑
j=1

(
u∗ix

∗
ij + v∗jx

∗
ij

)
=

m∑
i=1

n∑
j=1

(
u∗i + v∗j

)
x∗ij.

By Theorem 2 from Lecture 5 we know that zmin = wmax

m∑
i=1

n∑
j=1

cijx
∗
ij −

m∑
i=1

n∑
j=1

(
u∗i + v∗j

)
x∗ij = 0
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or
m∑
i=1

n∑
j=1

(
cijx

∗
ij −

(
u∗i + v∗j

))
x∗ij = 0.

Note that cijx
∗
ij− (u∗i +v∗j ) ≥ 0 and x∗ij ≥ 0. The sum of non-negative terms is equal

to zero if and only if each term is equal to zero meaning that (5) holds.

Necessity : Let us sum equalities (5) over all the indices i, j. Next, we can make
arguments, presented above, in the reverse order. �

Problems

10a.1: Prove the following theorem

Theorem 4. Every minor of A can only have one of the values 1, −1 or 0. More
precisely, given any Ak, a k-by-k submatrix of A, we have detAk = ±1 or 0.
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