ISS0031 Modeling and Identification

Juri Belikov
Department of Computer Control,
Tallinn University of Technology
jbelikov@cc.ic.ee

October 17, 2014

Test 1

Exercise 1

Problem statement

Define a linear programming problem.

Definition

A linealr programming problem may be defined as the problem of maximizing or minimizing a linear function subject to linear constraints.

Test 1

Problem statement

Define a linear programming problem.

Definition

A linear programming problem may be defined as the problem of maximizing or minimizing a linear function subject to linear constraints.

Test 1

Exercise 2

Problem statement

Define a convex set.

```
Let }S\not=\emptyset,S\subset\mp@subsup{\mathbb{R}}{}{n}\mathrm{ and }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}\inS\mathrm{ .
```


Definition

A set S in a vector space over \mathbb{R} is called a convex set if the line segment joining any pair of points $x_{1}, x_{2} \in S$ lies entirely in S

Definition

The set $\left[x_{1}, x_{2}\right]=\left\{x \mid x=\lambda x_{1}+(1-\lambda) x_{2}, 0 \leq \lambda \leq 1\right\}$ is called a line segment with the endpoints x_{1}, x_{2}

Test 1
 Exercise 2

Problem statement

Define a convex set.

Let $S \neq \emptyset, S \subset \mathbb{R}^{n}$ and $x_{1}, x_{2} \in S$.

Definition

A set S in a vector space over \mathbb{R} is called a convex set if the line segment joining any pair of points $x_{1}, x_{2} \in S$ lies entirely in S.

Definition

The set $\left[x_{1}, x_{2}\right]=\left\{x \mid x=\lambda x_{1}+(1-\lambda) x_{2}, 0 \leq \lambda \leq 1\right\}$ is called a line segment with the endpoints x_{1}, x_{2}.

Test 1

Problem statement

Determine two non-negative rational numbers such that their sum is maximum provided that their difference exceeds four. Furthermore, three times the first number plus the second should be less than or equal to 9 . Formulate the problem as a linear programming problem and solve it using graphical method.

Let x_{1} be the first and x_{2} be the second number, then Objective function:

Test 1

Problem statement

Determine two non-negative rational numbers such that their sum is maximum provided that their difference exceeds four. Furthermore, three times the first number plus the second should be less than or equal to 9 . Formulate the problem as a linear programming problem and solve it using graphical method.

Let x_{1} be the first and x_{2} be the second number, then Objective function:

$$
z=x_{1}+x_{2} \rightarrow \max
$$

Constraints:

$$
\begin{aligned}
x_{1}-x_{2} & \geq 4 \\
3 x_{1}+x_{2} & \leq 9 \\
x_{1} \geq 0, x_{2} & \geq 0 \\
x_{1}, x_{2} & \in \mathbb{Q}
\end{aligned}
$$

Test 1

- $x_{1}-x_{2}=4 \Rightarrow$ two points $(0,-4)$ and $(4,0)$
- $3 x_{1}+x_{2}=9 \Rightarrow$ two points $(0,9)$ and $(3,0)$
- Since $S_{1} \bigcap S_{2}=\emptyset$ the problem has no solution.

Test 1

Problem statement

Mr. Bob's bakery sells bagel and muffins. To bake a dozen (i.e. 12 pieces) bagels Bob needs 5 cups of flour, 2 eggs, and one cup of sugar. To bake a dozen muffins Bob needs 4 cups of flour, 4 eggs and two cups of sugar. Bob can sell bagels in 10 EUR/dozen and muffins in 12 EUR/dozen. Bob has 50 cups of flour, 30 eggs and 20 cups of sugar. Formulate the problem of deciding how many bagels and muffins should Bob bake in order to maximize his revenue. Solve the problem by Simplex method.

Let x_{1} be bagels and x_{2} be muffins, then

$$
z=10 x_{1}+12 x_{2} \rightarrow \max
$$

Test 1

Problem statement

Mr. Bob's bakery sells bagel and muffins. To bake a dozen (i.e. 12 pieces) bagels Bob needs 5 cups of flour, 2 eggs, and one cup of sugar. To bake a dozen muffins Bob needs 4 cups of flour, 4 eggs and two cups of sugar. Bob can sell bagels in 10 EUR/dozen and muffins in 12 EUR/dozen. Bob has 50 cups of flour, 30 eggs and 20 cups of sugar. Formulate the problem of deciding how many bagels and muffins should Bob bake in order to maximize his revenue. Solve the problem by Simplex method.

Let x_{1} be bagels and x_{2} be muffins, then

$$
\begin{aligned}
z=10 x_{1}+12 x_{2} & \rightarrow \max \\
5 x_{1}+4 x_{2} & \leq 50 \\
2 x_{1}+4 x_{2} & \leq 30 \\
1 \cdot x_{1}+2 x_{2} & \leq 20 \\
x_{1} \geq 0, x_{2} & \geq 0
\end{aligned}
$$

Test 1

Initial Simplex table:

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	z	b	variables
5	4	1	0	0	0	50	s_{1}
2	4	0	1	0	0	30	s_{2}
1	2	0	0	1	0	20	s_{3}
-10	-12	0	0	0	1	0	z

Test 1

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	z	b	variables	ratio	transformations
5	4	1	0	0	0	50	s_{1}	$\frac{50}{4}=12.5$	$R_{1}-4 \tilde{R}_{2}$
2	4	0	1	0	0	30	s_{2}	$\frac{30}{4}=7.5$	$\Rightarrow \tilde{R}_{2}:=\frac{R_{2}}{4}$
1	2	0	0	1	0	20	s_{3}	$\frac{20}{2}=10$	$R_{3}-2 \tilde{R}_{2}$
-10	-12	0	0	0	1	0	z		$R_{4}+12 \tilde{R}_{2}$
3	0	1	-1	0	0	20	s_{1}	$\frac{20}{3}=6 .(6)$	$\Rightarrow \tilde{R}_{1}:=\frac{R_{1}}{3}$
$\frac{1}{2}$	1	0	$\frac{1}{4}$	0	0	7.5	x_{2}	15	$R_{2}-\frac{1}{2} \tilde{R}_{1}$
0	0	0	-1	1	0	5	s_{3}		
-4	0	0	3	0	1	90	z		$R_{4}+4 \tilde{R}_{1}$

Test 1

x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	z	b	variables
1	0	$\frac{1}{3}$	$-\frac{1}{3}$	0	0	$\frac{20}{3}$	x_{1}
0	1	$-\frac{1}{6}$	$\frac{5}{12}$	0	0	$\frac{25}{6}$	x_{2}
0	0	0	-1	1	0	5	s_{3}
	0	4	$\frac{5}{3}$	0	1	$\frac{350}{3}$	z

In the above table we notice that there are no negative entries in the objective row.

Conclusion

The optimal solution has been found. Answer is $z_{\max }\left(\frac{20}{3}, \frac{25}{6}\right)=\frac{350}{3}$ or in pieces (1 dozen is 12 pieces) $z_{\max }(80,50)=1400$.

