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Convex Set and Function
Line segment

Let S 6= ∅,S ⊂ Rn and x1, x2 ∈ S .

Definition

The set [x1, x2] = {x |x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1} is called a line segment with the
endpoints x1, x2.

Example: Let x1(2, 1) and x2(4, 3). Next, using the formula from the above definition,
we get

x1 = 2 · λ+ (1− λ) · 4
x2 = 1 · λ+ (1− λ) · 3

0 ≤ λ ≤ 1.
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Convex Set

Definition

A set S in a vector space over R is called a convex set if the line segment joining any
pair of points x1, x2 ∈ S lies entirely in S .
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Convex Set
Illustrative examples I

x1
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(a) convex

x1 x2

(b) non-convex
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Convex Set
Illustrative examples I
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Convex Set
Illustrative examples II

x1

x

(e) convex

x1

x

(f) non-convex

Juri Belikov (TUT) Lecture 3 September 19, 2014 5 / 24



Convex Set
Illustrative examples II
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Convex Set

Proposition

A solution set L for the linear inequality a1x1 + a2x2 + · · ·+ anxn ≤ b is a convex set.

Proof: Let the points C1(c11 , c
1
2 , . . . , c

1
n ) and C2(c21 , c

2
2 , . . . , c

2
n ) be solutions of the given

inequality. Then,

a1c
1
1 + a2c

1
2 + · · ·+ anc

1
n ≤ b

a1c
2
1 + a2c

2
2 + · · ·+ anc

2
n ≤ b

Next, we multiply the first inequality by λ, the second inequality by 1− λ and add results

a1(λc11 + (1− λ)c21 ) + a2(λc12 + (1− λ)c22 ) + · · ·

+ an(λc1n + (1− λ)c2n ) ≤ λb + (1− λ)b = b.

Using the obtained result, we can conclude that the point

C(λc11 + (1− λ)c21 , λc
1
2 + (1− λ)c22 , . . . , λc

1
n + (1− λ)c2n ) =

λC1 + (1− λ)C2 ∈ L. �
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Convex Set

Proposition

The intersection of any finite number of convex sets is a convex set.

Proof: Suppose S1, S2, . . . , Sn are convex sets. Then their intersection
n⋂

i=1

Si = {x : x ∈ Si ,∀i = 1, . . . , n} is also a convex set. To see this, consider

x1, x2 ∈
n⋂

i=1

Si and 0 ≤ λ ≤ 1. Then, λx1 + (1− λ)x2 ∈ Si for i = 1, . . . , n by definition of

convex set. Therefore, λx1 + (1− λ)x2 ∈
n⋂

i=1

Si . �
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Convex Set

Corollary

The solution set of a system of linear inequalities is a convex set.

Corollary

The solution set of linear equations is a convex set.

Corollary

The solution set of constraints for linear programming problem (set of feasible solutions)
is a convex set.
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Convex Set
Convex combination

Next, we generalize the definition of convex set.

Definition

Given a finite number of points x1, x2, . . . , xn in a real vector space, a convex
combination of these points is a point of the form α1x1 + α2x2 + · · ·+ αnxn, where the
real numbers αi ≥ 0 and α1 + α2 + · · ·+ αn = 1.
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Convex Set
Example: Case 1

Let n = 2, then a convex combination of points x1, x2 is in the form

x = λ1x1 + λ2x2,

where λ1 + λ2 = 1 and λ1, λ2 ≥ 0. Denote by λ1 = λ, then λ2 = 1− λ and we get that
the convex combination of two points is

x = λx1 + (1− λ)x2.
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Convex Set
Example: Case 2

Let n = 3, then
x4 = α2x2 + α3x3,

where α2 + λ3 = 1 and α2, α3 ≥ 0; x = β1x1 + β4x4, where β1 + β4 = 1 and β1, β4 ≥ 0.
Then, we get that the convex combination of 3 points is:

x = β1x1 + β4(α2x2 + α3x3) = β1x1 + β4α2x2 + β4α3x3 = λ1x1 + λ2x2 + λ3x3,

where

λ1 + λ2 + λ3 = β1 + (β4α2 + β4α3) = β1 + β4(α2 + α3) = β1 + β4 = 1.

x1

x2

x3

x4
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Convex Set

Definition

Let x be a convex combination of points from the set S . Then, S is called convex if
x ∈ S .
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Convex Set
Example

Verify that the point P(6, 3) is an interior point of the set

−4x1 + 7x2 ≤ 13

6x1 − x2 ≤ 47

x1 + 3x2 ≥ 11

and express P as a convex combination of the vertices of the solutions of these system.
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Convex Set
Example cont.

Substitute coordinates of P to each inequality ⇒ all of them hold ⇒ P(6, 3) is the
interior point of the corresponding polytope.

A

B

C

2 4 6 8
x1

2

4

6

8

x2
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Convex Set
Example cont. 2

The obtained polytope has 3 vertices. Let us find coordinates of the point A.

−4x1 + 7x2 = 13

x1 + 3x2 = 11

One method for solving such a system is as follows. First, solve the second equation for
x1 in terms of x2 as

x1 = 11− 3x2.

Now, substitute this expression for x1 into the first equation as

−4(11− 3x2) + 7x2 = 13.

This results in a single equation involving only the variable x2. Solving gives x2 = 3, and
substituting this into the equation for x1 yields x1 = 2. Therefore, A(2, 3).

Similarly, we can calculate that B(9, 7) and C(8, 1).
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Convex Set
Example cont. 3

Next, according to the definition of convex combination, we get

X = αA + βB + γC

with α + β + γ = 1 and α, β, γ ≥ 0. Thus, we can construct the following system of
equations.

2α + 9β + 8γ = 6

3α + 7β + γ = 3

α + β + γ = 1

A solution to the system above is given by α = 7/19, β = 8/19, γ = 4/19. Finally,
substituting the obtained solution to the expression for X , we get

X =
7

19
A +

4

19
B +

8

19
C .
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Convex Functions

Definition

A real valued function f : S → R defined on a convex set S in a vector space is called
convex or concave if, for any two points x1 and x2 in S and any 0 ≤ λ ≤ 1,
f (λx1 + (1−λ)x2) ≤ λf (x1) + (1−λ)f (x2) or f (λx1 + (1−λ)x2) ≥ λf (x1) + (1−λ)f (x2).

Example:

I f (x) = x2 is convex on R;

I f (x) = log x is concave on R+;

I f (x) =
1

x
is convex on R+ and concave on R−;

I f (x) = x3 − x is neither convex nor concave on R.
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Convex Functions

Proposition

A linear function f = a1x1 + a2x2 + · · ·+ anxn is both convex and concave.

Proof: Let X1(x ′1, x
′
2, . . . , x

′
n) and X2(x ′′1 , x

′′
2 , . . . , x

′′
n ). Then,

λX1 + (1− λ)X2 = (λx ′1 + (1− λ)x ′′1 , . . . , λx
′
n + (1− λ)x ′′n )

and

f (λX1 + (1− λ)X2) = a1(λx ′1 + (1− λ)x ′′1 ) + · · ·+ an(λx ′n + (1− λ)x ′′n ) =

= λ(a1x
′
1 + a2x

′
2 + · · ·+ anx

′
n) + (1− λ)(a1x

′′
1 + a2x

′′
2 + · · ·+ anx

′′
n ) =

= λf (X1) + (1− λ)f (X2).

Hence, we can conclude that f is convex and concave. �
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Convex Optimization Problem

Definition

A function f (x) is said to have a local maximum (minimum) at x0 if there exists an
interval I around x0 such that f (x0) ≥ f (x) (f (x0) ≤ f (x)) for all x ∈ I .

Definition

We say that the function f (x) has a global maximum (minimum) at x = x0 on the
interval I , if f (x0) ≥ f (x) (f (x0) ≤ f (x)) for all x ∈ I .

Note that if f (x) is a continuous function on a closed bounded interval [a, b], then f (x) will have

a global maximum and a global minimum on [a, b]. On the other hand, if the interval is not

bounded or closed, then there is no guarantee that a continuous function f (x) will have global

extremum.

Example:

I f (x) = x2 does not have a global maximum on the interval [0,∞);

I function f (x) = − 1

x
does not have a global minimum on the interval (0, 1).
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Convex Optimization Problem

Definition

A convex optimization problem is a problem where all of the constraints are convex
functions, and the objective is a convex function if minimizing, or a concave function if
maximizing.

Theorem

For a convex optimization problem all locally optimal points are globally optimal.
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Linear Programming as a Special Case of Convex Optimization Problem

The linear programming problem can be stated as follows:

z = c1x1 + c2x2 + · · ·+ cnxn → min

subject to the constraints

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

and
x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.
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LPP

Theorem

If a linear programming problem has a solution, then it must occur at a vertex, or
corner point, of the feasible set S , associated with the problem. Furthermore, if the
objective function z is optimized at two adjacent vertices of S , then it is optimized at
every point on the line segment joining these two vertices, in which case there are
infinitely many solutions to the problem.

Proof: The proof is by contradiction. Suppose that the optimal solution x∗ is an interior
point of the feasible set S . Since the set is convex, then there exist two points x1, x2 ∈ S
such that x∗ ∈ [x1, x2], i.e.,

x∗ = λx1 + (1− λ)x2.

We know that x∗ is optimal solution, then denoting

f (x) := c1x1 + · · ·+ cnxn,

we get
f (x∗) ≥ f (x1),

f (x∗) ≥ f (x2).
(1)
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LPP

Since f (x) is linear (convex) function

f (x∗) = f (λx1 + (1− λx2)) = λf (x1) + (1− λ)f (x2). (2)

Substituting (2) to (1), we get

f (x1) ≤ λf (x1) + (1− λ)f (x2)

f (x2) ≤ λf (x1) + (1− λ)f (x2)

or after simple transformations f (x1) = f (x2). From (2) it follows that

f (x∗) = λf (x1) + (1− λ)f (x2) = f (x1).

Hence, we get
f (x1) = f (x2) = f (x∗) = z0 ∈ R.

As a result, points x1, x2, x
∗ are in the hyperplane f (x) = z0. We know that the point x∗

defines this hyperplane; however, the end points of the line segment [x1, x2] are free to
choose. Therefore, points x1, x2 may not necessarily belong to this hyperplane. This
contradicts our assumption, showing that x∗ has to be on the boundary of the set S . �
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LPP

Corollary

Above theorem tells us that our search for the solution(s) to a linear programming
problem may be restricted to the examination of the set of vertices of the feasible set S
associated with the problem. Since a feasible set S has finitely many vertices, the
theorem suggest that the solution(s) may be found by inspecting the values of the
objective function z at these vertices.
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