ISS0031 Modeling and Identification

Juri Belikov

Department of Computer Control, Tallinn University of Technology

jbelikov@cc.ic.ee

September 5, 2014

Juri Belikov (TUT) Lecture 1 September 5, 2014 1

Tallinn University of Technology

Department of Computer Control

Institute of Cybernetics

* Associate Professor

★ Room: U02-320

* From 9AM until 12AM

* e-mail: juri.belikov@ttu.ee

* Researcher

★ Room: CYB-325

* From 13PM until ...

⋆ e-mail: jbelikov@cc.ioc.ee

Alpha Control Laboratory

- ► Department of Computer Control, Tallinn University of Technology
- ▶ U02-301a
- Established in the middle of 2013
- ▶ Education and Research
- Research focus: computational/artificial intelligence based methods, fractional calculus
- ▶ http://a-lab.ee

Overview of the Course

General information

Course code ISS0031

Subject title Modeling and Identification

Subject title (in estonian) Modelleerimine ja Identifitseerimine

Lecturer Juri Belikov

Course volume ECTS 5

Stationary study (weekly hours) lectures: 2, exercises: 2

Assessment form examination

Teaching semester autumn
Official working language English

Where to find: http://a-lab.ee/edu/node/457

What to find: material, schedule, etc.

Overview of the Course Prerequisites

Recommended preparation (expected knowledge):

- Linear Algebra (YMA3710)
- basics of Mathematical Analysis (YMM3731)
- ▶ knowledge of programming languages (e.g., MATLAB or *Mathematica*) is useful
- basic knowledge of controls concepts (at the level of ISS0010 and ISS0021) is helpful.

Recommended preparation (expected knowledge):

- Linear Algebra (YMA3710)
- basics of Mathematical Analysis (YMM3731)
- knowledge of programming languages (e.g., MATLAB or Mathematica) is useful
- basic knowledge of controls concepts (at the level of ISS0010 and ISS0021) is helpful.

do you know that awesome feeling, when you finally understand math?

Recommended preparation (expected knowledge):

- Linear Algebra (YMA3710)
- basics of Mathematical Analysis (YMM3731)
- ▶ knowledge of programming languages (e.g., MATLAB or *Mathematica*) is useful
- basic knowledge of controls concepts (at the level of ISS0010 and ISS0021) is helpful.

do you know that awesome feeling, when you finally understand math?

The final grade consists of two parts:

- ► Test 40% (2 assignments)
- ► Final Project 60% (7-10min. project proposal is due on **October 17th** in class presentation).

A project has to be **self-sufficient**, i.e., it has to contain:

- √ brief introduction,
- √ description of a problem,
- √ solution of a problem,
- √ examples/practical results,
- √ list of references.

The following two types of projects are possible:

- Solution of a research problem relevant to the student's area of interest.
- Independent study of a topic not covered in the course (e.g., reading a scientific article or book chapter).

- Application of linear programming in game theory
- Survey on algebraic framework of differential forms
- A realization problem (input-output to state-space)
- Implementation of scientific results in Mathematica or MATLAB environments
- Time scales theory based toolbox for MATLAB
- Survey on structural properties of linear switched
- Survey on networked control systems
- Modeling a laboratory object
- Modeling and implementation of fractance networks for control applications

Overview of the Course

Schedule

Test & Co

Mathematical Programming

Control Theory

Fractional-order Calculus

Neural Networks

Practice

Any questions about organizing part of the course?

Lucius Annaeus Seneca

[&]quot; Per aspera ad astra."

[&]quot; Through hardships to the stars."

Introductory example

Introductory example

Introductory example

Introductory example

Introductory example

Mathematical Programming Introductory example

should be purchased so to get the maximum profit.

Mathematical Programming Introductory example

Introductory example

Table: Small summary

	P_1	P_2
Outcome	300	250
Income	325	265

P_1	P ₂	Investment	Amount after sale	Profit
0	6	$0 \cdot 300 + 6 \cdot 250 = 1500$	$0 \cdot 325 + 6 \cdot 265 = 1590$	1590 - 1500 = 90

P_1	P ₂	Investment	Amount after sale	Profit
0	6	$0 \cdot 300 + 6 \cdot 250 = 1500$	$0 \cdot 325 + 6 \cdot 265 = 1590$	1590 - 1500 = 90
1	4	$1 \cdot 300 + 4 \cdot 250 = 1300$	$1 \cdot 325 + 4 \cdot 265 = 1385$	85

P_1	P ₂	Investment	Amount after sale	Profit
0	6	$0 \cdot 300 + 6 \cdot 250 = 1500$	$0 \cdot 325 + 6 \cdot 265 = 1590$	1590 - 1500 = 90
1	4	$1 \cdot 300 + 4 \cdot 250 = 1300$	$1 \cdot 325 + 4 \cdot 265 = 1385$	85
2	3	$2 \cdot 300 + 3 \cdot 250 = 1350$	$2 \cdot 325 + 3 \cdot 265 = 1445$	95

P_1	P_2	Investment	Amount after sale	Profit
0	6	$0 \cdot 300 + 6 \cdot 250 = 1500$	$0 \cdot 325 + 6 \cdot 265 = 1590$	1590 - 1500 = 90
1	4	$1 \cdot 300 + 4 \cdot 250 = 1300$	$1 \cdot 325 + 4 \cdot 265 = 1385$	85
2	3	$2 \cdot 300 + 3 \cdot 250 = 1350$	$2 \cdot 325 + 3 \cdot 265 = 1445$	95
3	2	$3 \cdot 300 + 2 \cdot 250 = 1400$	$3 \cdot 325 + 2 \cdot 265 = 1505$	105

P_1	P ₂	Investment	Amount after sale	Profit
0	6	$0 \cdot 300 + 6 \cdot 250 = 1500$	$0 \cdot 325 + 6 \cdot 265 = 1590$	1590 - 1500 = 90
1	4	$1 \cdot 300 + 4 \cdot 250 = 1300$	$1 \cdot 325 + 4 \cdot 265 = 1385$	85
2	3	$2 \cdot 300 + 3 \cdot 250 = 1350$	$2 \cdot 325 + 3 \cdot 265 = 1445$	95
3	2	$3 \cdot 300 + 2 \cdot 250 = 1400$	$3 \cdot 325 + 2 \cdot 265 = 1505$	105
4	1	$4 \cdot 300 + 1 \cdot 250 = 1450$	$4 \cdot 325 + 1 \cdot 265 = 1565$	115

P_1	P ₂	Investment	Amount after sale	Profit
0	6	$0 \cdot 300 + 6 \cdot 250 = 1500$	$0 \cdot 325 + 6 \cdot 265 = 1590$	1590 - 1500 = 90
1	4	$1 \cdot 300 + 4 \cdot 250 = 1300$	$1 \cdot 325 + 4 \cdot 265 = 1385$	85
2	3	$2 \cdot 300 + 3 \cdot 250 = 1350$	$2 \cdot 325 + 3 \cdot 265 = 1445$	95
3	2	$3 \cdot 300 + 2 \cdot 250 = 1400$	$3 \cdot 325 + 2 \cdot 265 = 1505$	105
4	1	$4 \cdot 300 + 1 \cdot 250 = 1450$	$4 \cdot 325 + 1 \cdot 265 = 1565$	115
5	0	$5 \cdot 300 + 0 \cdot 250 = 1500$	$5 \cdot 325 + 0 \cdot 265 = 1625$	125

Introductory example: Table

P_1	P ₂	Investment	Amount after sale	Profit
0	6	$0 \cdot 300 + 6 \cdot 250 = 1500$	$0 \cdot 325 + 6 \cdot 265 = 1590$	1590 - 1500 = 90
1	4	$1 \cdot 300 + 4 \cdot 250 = 1300$	$1 \cdot 325 + 4 \cdot 265 = 1385$	85
2	3	$2 \cdot 300 + 3 \cdot 250 = 1350$	$2 \cdot 325 + 3 \cdot 265 = 1445$	95
3	2	$3 \cdot 300 + 2 \cdot 250 = 1400$	$3 \cdot 325 + 2 \cdot 265 = 1505$	105
4	1	$4 \cdot 300 + 1 \cdot 250 = 1450$	$4 \cdot 325 + 1 \cdot 265 = 1565$	115
5	0	$5 \cdot 300 + 0 \cdot 250 = 1500$	$5 \cdot 325 + 0 \cdot 265 = 1625$	125

Decision: 5 phones of type P_1 should be purchased.

Mathematical programming problem can be written in the general form as

$$g_1(x_1, x_2, ..., x_n) \le 0$$

 $g_2(x_1, x_2, ..., x_n) \le 0$
 \vdots
 $g_m(x_1, x_2, ..., x_n) \le 0$
 $(x_1, x_2, ..., x_n) \in S \subset \mathbb{R}^n$

Definition

The function to be maximized

$$z = f(x_1, x_2, \dots, x_n) \rightarrow \max$$

or minimized

$$z = f(x_1, x_2, \dots, x_n) \rightarrow \min$$

is called the objective function.

Definition

The limitations on resources which are to be allocated among various competing variables are in the form of equations or inequalities and are called **constraints** or **restrictions**.

Definition

A linear programming problem may be defined as the problem of maximizing or minimizing a linear function subject to linear constraints.

The standard maximum problem can be stated as: Find a vector $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$, to maximize

$$z = c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

subject to the constraints

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$

and

$$x_1\geq 0, x_2\geq 0, \ldots, x_n\geq 0.$$

Some more definitions

Definition

A vector x for the optimization problem is said to be **feasible** if it satisfies all the constraints.

Definition

A vector x is **optimal** if it feasible and optimizes the objective function over feasible x.

Definition

A linear programming problem is said to be **feasible** if there exist a feasible vector x for it; otherwise, it is said to be **infeasible**.

Lemma

Some more definitions

Definition

A vector x for the optimization problem is said to be **feasible** if it satisfies all the constraints.

Definition

A vector x is **optimal** if it feasible and optimizes the objective function over feasible x.

Definition

A linear programming problem is said to be **feasible** if there exist a feasible vector x for it; otherwise, it is said to be **infeasible**.

Lemma

Some more definitions

Definition

A vector x for the optimization problem is said to be **feasible** if it satisfies all the constraints.

Definition

A vector x is **optimal** if it feasible and optimizes the objective function over feasible x.

Definition

A linear programming problem is said to be **feasible** if there exist a feasible vector x for it; otherwise, it is said to be **infeasible**.

Lemma

Some more definitions

Definition

A vector *x* for the optimization problem is said to be **feasible** if it satisfies all the constraints.

Definition

A vector x is **optimal** if it feasible and optimizes the objective function over feasible x.

Definition

A linear programming problem is said to be **feasible** if there exist a feasible vector x for it; otherwise, it is said to be **infeasible**.

Lemma

Suppose that

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \quad C = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix},$$

then linear programming problem can be rewritten in the **standard** or **canonical** matrix form as

Standard	Canonical
$z = CX o \max(\min)$	$z = CX o \max(\min)$
$AX \leq B$	AX=B
$X \ge 0$	$X \ge 0$

The **formulation** involves the following 3 steps:

- **II** identify the **decision variables** to be determined and express them in terms of algebraic symbols such as x_1, x_2, \ldots, x_n ;
- identify the objective which is to be optimized (maximized or minimized) and express it as a linear function of the above defined decision variables;
- identify all the limitations in the given problem and then express them as linear equations or inequalities in terms of above defined decision variables.

The **formulation** involves the following 3 steps:

- **II** identify the **decision variables** to be determined and express them in terms of algebraic symbols such as x_1, x_2, \ldots, x_n ;
- identify the objective which is to be optimized (maximized or minimized) and express it as a linear function of the above defined decision variables;
- identify all the limitations in the given problem and then express them as linear equations or inequalities in terms of above defined decision variables.

The **formulation** involves the following 3 steps:

- **II** identify the **decision variables** to be determined and express them in terms of algebraic symbols such as x_1, x_2, \ldots, x_n ;
- identify the objective which is to be optimized (maximized or minimized) and express it as a linear function of the above defined decision variables;
- identify all the **limitations** in the given problem and then express them as linear equations or inequalities in terms of above defined decision variables.

Linear Programming Problem

Solution methods

Solving linear programming problem is nothing but determining the values of decision variables that maximizes or minimizes the given effective measure satisfying all the constraints.

- ► Graphical method.
- Analytical method or trial and error method.
- ► Simplex method.
- Big-M method.
- Two phase simplex method.
- Dual simplex method.
- Revised simplex method.

Illustrative examples: The production planning problem

A company manufactures two types of products P_1 and P_2 and sells them at a profit of 2 EUR and 3 EUR, respectively. Each product is processed on two machines M_1 and M_2 . P_1 requires 1 minute of processing time on M_1 and 2 minutes on M_2 , type P_2 requires 1 minute on M_1 and 1 minute on M_2 . The machine M_1 is available for not more than 6 hours and 40 minutes, while machine M_2 is available for 10 hours during one working day.

Machine		cessing time	Available time	
M_1	1	1		
M_2		1		
Profit				

Problem

Maximize the profit of the company

Illustrative examples: The production planning problem

A company manufactures **two types** of products P_1 and P_2 and **sells** them at a profit of 2 EUR and 3 EUR, respectively. Each product is processed on **two machines** M_1 and M_2 . P_1 requires 1 minute of **processing time** on M_1 and 2 minutes on M_2 , type P_2 requires 1 minute on M_1 and 1 minute on M_2 . The machine M_1 is **available** for not more than 6 hours and 40 minutes, while machine M_2 is **available** for 10 hours during one working day.

Machine	Prod	cessing time	Available time	
	P_1	P_2	Available time	
<i>M</i> ₁	1	1	400	
M ₂	2	1	600	
Profit	2	3		

Problem

Maximize the profit of the company.

The production planning problem: Objective function

- x_1 the number of products of type P_1 ,
- x_2 the number of products of type P_2 .

The profit on selling:

- $ightharpoonup x_1$ units of type P_1 is 2 EUR per product $\Longrightarrow 2x_1$,
- x_2 units of type P_2 is 3 EUR per product $\implies 3x_2$.

Therefore, total profit on selling x_1 units of type P_1 and x_2 units of type P_2 is given by (objective function)

$$z=2x_1+3x_2.$$

Juri Belikov (TUT)

The production planning problem: Constraints

Machine M_1 takes 1 minute time on type P_1 and 1 minute time on type P_2 \Longrightarrow the total number of minutes required on machine M_1 is given by $x_1 + x_2$. **Availability**: not more than 6 hours and 40 minutes.

$$x_1 + x_2 \le 400$$

The total number of minutes required on machine M_2 is given by $2x_1 + x_2$. **Availability**: not more than 10 hours.

$$2x_1+x_2\leq 600$$

CANNOT produce negative quantities

$$x_1 \ge 0, x_2 \ge 0.$$

Juri Belikov (TUT) Lecture 1 September 5, 2014

The production planning problem: Summary

The problem is to find x_1 and x_2 which maximize the objective function z and can be formally written as

$$z = 2x_1 + 3x_2 \rightarrow \max$$

$$x_1 + x_2 \le 400$$

$$2x_1 + x_2 \le 600$$

$$x_1 \ge 0, x_2 \ge 0.$$

Let there be three different **types** of food F_1 , F_2 , F_3 , that supply varying **quantities** of 2 nutrients N_1 , N_2 .

Suppose a person has decided to make an individual plan to improve the health.

We know that 400 g and 1 kg are the **minimum** daily requirements of nutrients N_1 and N_2 , respectively. Moreover, the corresponding unit of food F_1 , F_2 , F_3 **costs** 2, 4 and 3 EUR, respectively. Finally, we know that

- ▶ one unit of food F_1 contains 20 g of nutrient N_1 and 40 g of nutrient N_2 ;
- ▶ one unit of food F_2 contains 25 g of nutrient N_1 and 62 g of nutrient N_2 ;
- one unit of food F_3 contains 30 g of nutrient N_1 and 75 g of nutrient N_2 .

The diet problem: Table

The given information can be arranged in the form of the following table:

Nutrients	Food			Requirement/day	
	F_1	F ₂	F ₃	Requirement/day	
N_1	20	25	30	400	
N ₂	40	62	75	1000	
Price	2	4	3		

Problem

Supply the required nutrients at **minimum** cost.

Tables are good! Why? \rightarrow see the next slide ...

Let x_i for i = 1, 2, 3 be the number of units of food F_i to be purchased per day. The problem can be formally written as

$$\begin{split} z &= 2x_1 + 4x_2 + 3x_3 \to \text{min} \\ 20x_1 + 25x_2 + 30x_3 &\geq 400 \\ 40x_1 + 62x_2 + 75x_3 &\geq 1000 \\ x_1 &\geq 0, x_2 \geq 0, x_3 \geq 0. \end{split}$$

Illustrative examples: The transportation problem

- ▶ 3 warehouses W_i for i = 1, ..., 3 with commodity of the same type in amount of 200, 300, 450 units
- ▶ 4 consumers C_j for $j=1,\ldots,4$ who want to receive at least 150, 300, 150, 200 units of the commodity.

The **cost** of transporting one unit of the commodity from warehouse W_i to consumer C_j together with available information are summarized in the following table:

Warehouse	Consumers				Reserve
	C_1	<i>C</i> ₂	<i>C</i> ₃	C ₄	Reserve
W_1	3	2	7	1	200
W ₂	1	4	5	2	300
<i>W</i> ₃	2	7	4	3	450
Requirement	150	300	150	200	

Problem

Meet the consumer requirements at minimum transportation cost.

The transportation problem: Modeling

The total transportation cost is

$$\begin{split} z &= 3x_{11} + 2x_{12} + 7x_{13} + x_{14} + x_{21} + 4x_{22} + \\ &\quad + 5x_{23} + 2x_{24} + 2x_{31} + 7x_{32} + 4x_{33} + 3x_{34} \to \text{min} \,. \end{split}$$

The amount sent from and available at the warehouse W_i yields

$$x_{11} + x_{12} + x_{13} + x_{14} \le 200$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 300$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 450.$$

The amount sent to and required by the consumer C_j results in

$$x_{11} + x_{21} + x_{31} \ge 150$$

 $x_{12} + x_{22} + x_{32} \ge 300$
 $x_{13} + x_{23} + x_{33} \ge 150$
 $x_{14} + x_{24} + x_{34} \ge 200$.

Negative amount from W_i to C_j is not allowed

$$x_{ij} \geq 0,$$
 $i = 1, 2, 3 \text{ and } j = 1, \dots, 4.$

The transportation problem: Modeling

The total transportation cost is

$$\begin{split} z &= 3x_{11} + 2x_{12} + 7x_{13} + x_{14} + x_{21} + 4x_{22} + \\ &\quad + 5x_{23} + 2x_{24} + 2x_{31} + 7x_{32} + 4x_{33} + 3x_{34} \to \text{min} \,. \end{split}$$

The amount sent from and available at the warehouse W_i yields

$$\begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} &\leq 200 \\ x_{21} + x_{22} + x_{23} + x_{24} &\leq 300 \\ x_{31} + x_{32} + x_{33} + x_{34} &\leq 450. \end{aligned}$$

The amount sent to and required by the consumer C_j results in

$$x_{11} + x_{21} + x_{31} \ge 150$$

 $x_{12} + x_{22} + x_{32} \ge 300$
 $x_{13} + x_{23} + x_{33} \ge 150$
 $x_{14} + x_{24} + x_{34} \ge 200$.

Negative amount from W_i to C_j is not allowed

$$x_{ij} \ge 0$$
, $i = 1, 2, 3$ and $j = 1, \dots, 4$.

The transportation problem: Modeling

The total transportation cost is

$$\begin{split} z &= 3x_{11} + 2x_{12} + 7x_{13} + x_{14} + x_{21} + 4x_{22} + \\ &\quad + 5x_{23} + 2x_{24} + 2x_{31} + 7x_{32} + 4x_{33} + 3x_{34} \to \text{min} \,. \end{split}$$

The amount sent from and available at the warehouse W_i yields

$$\begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} &\leq 200 \\ x_{21} + x_{22} + x_{23} + x_{24} &\leq 300 \\ x_{31} + x_{32} + x_{33} + x_{34} &\leq 450. \end{aligned}$$

The amount sent to and required by the consumer C_j results in

$$x_{11} + x_{21} + x_{31} \ge 150$$

 $x_{12} + x_{22} + x_{32} \ge 300$
 $x_{13} + x_{23} + x_{33} \ge 150$
 $x_{14} + x_{24} + x_{34} \ge 200$.

Negative amount from W_i to C_j is not allowed

$$x_{ij} \geq 0,$$
 $i = 1, 2, 3 \text{ and } j = 1, \dots, 4.$

The transportation problem: Modeling

The total transportation cost is

$$\begin{split} z &= 3x_{11} + 2x_{12} + 7x_{13} + x_{14} + x_{21} + 4x_{22} + \\ &\quad + 5x_{23} + 2x_{24} + 2x_{31} + 7x_{32} + 4x_{33} + 3x_{34} \to \text{min} \,. \end{split}$$

The amount sent from and available at the warehouse W_i yields

$$\begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} &\leq 200 \\ x_{21} + x_{22} + x_{23} + x_{24} &\leq 300 \\ x_{31} + x_{32} + x_{33} + x_{34} &\leq 450. \end{aligned}$$

The amount sent to and required by the consumer C_j results in

$$x_{11} + x_{21} + x_{31} \ge 150$$

 $x_{12} + x_{22} + x_{32} \ge 300$
 $x_{13} + x_{23} + x_{33} \ge 150$
 $x_{14} + x_{24} + x_{34} \ge 200$.

Negative amount from W_i to C_j is not allowed

$$x_{ij} \geq 0$$
, $i = 1, 2, 3$ and $j = 1, \dots, 4$.

Problem I

A dealer has 1500 EUR only for a purchase of rice and wheat. A bag of rice costs 150 EUR and a bag of wheat costs 120 EUR. He has a storage capacity of ten bags only and the dealer gets a profit of 11 EUR and 8 EUR per bag of rice and wheat, respectively. Formulate the problem of deciding how many bags of rice and wheat should dealer buy in order to get the maximum profit.

Problem II

Mr. Bob's bakery sells bagel and muffins. To bake a dozen bagels Bob needs 5 cups of flour, 2 eggs, and one cup of sugar. To bake a dozen muffins Bob needs 4 cups of flour, 4 eggs and two cups of sugar. Bob can sell bagels in 10 EUR/dozen and muffins in 12 EUR/dozen. Bob has 50 cups of flour, 30 eggs and 20 cups of sugar. Formulate the problem of deciding how many bagels and muffins should Bob bake in order to maximize his revenue.

A small company produces two types of products bacon and cheese and sells them at a profit of 4 EUR/kg and 6 EUR/kg, respectively. A student is trying to decide on lowest cost diet that provides sufficient amount of proteins and fats. He knows that bacon contains 2 units of protein/kg, 5 units of fat/kg and cheese contains 2 units of protein/kg, 3 units of fat/kg. Moreover, for the proper diet student needs to consume 9 units of protein/day and 10 units of fat/day. Formulate the problem of deciding how much student should consume of food to meet the daily norm and the cost of food was minimal.

See you next week!

32 / 32