ISS0031 Modeling and Identification

Juri Belikov
Department of Computer Control,
Tallinn University of Technology
jbelikov@cc.ic.ee

September 5, 2014

Personal information

Tallinn University of Technology

Department of
Computer Control

Institute of
Cybernetics

* Associate Professor
* Room: U02-320
* From 9AM until 12AM
* e-mail: juri.belikov@ttu.ee
* Researcher
* Room: CYB-325
* From 13PM until ...
* e-mail: jbelikov@cc.ioc.ee

Alpha Control Laboratory

- Department of Computer Control, Tallinn University of Technology
- U02-301a
- Established in the middle of 2013
- Education and Research
- Research focus: computational/artificial intelligence based methods, fractional calculus
- http://a-lab.ee

Overview of the Course

Course code	ISS0031
Subject title	Modeling and Identification
Subject title (in estonian)	Modelleerimine ja Identifitseerimine
Lecturer	Juri Belikov
Course volume ECTS	5
Stationary study (weekly hours)	lectures: 2, exercises: 2
Assessment form	examination
Teaching semester	autumn
Official working language	English

Where to find: http://a-lab.ee/edu/node/457
What to find: material, schedule, etc.

Overview of the Course

Recommended preparation (expected knowledge):

- Linear Algebra (YMA3710)
- basics of Mathematical Analysis (YMM3731)
- knowledge of programming languages (e.g., MATLAB or Mathematica) is useful
- basic knowledge of controls concepts (at the level of ISS0010 and ISS0021) is helpful.

Overview of the Course

Recommended preparation (expected knowledge):

- Linear Algebra (YMA3710)
- basics of Mathematical Analysis (YMM3731)
- knowledge of programming languages (e.g., MATLAB or Mathematica) is useful
- basic knowledge of controls concepts (at the level of ISS0010 and ISS0021) is helpful.

do you know that awesome feeling, when you finally understand math?

Overview of the Course

Recommended preparation (expected knowledge):

- Linear Algebra (YMA3710)
- basics of Mathematical Analysis (YMM3731)
- knowledge of programming languages (e.g., MATLAB or Mathematica) is useful
- basic knowledge of controls concepts (at the level of ISS0010 and ISS0021) is helpful.

do you know that awesome feeling, when you finally understand math?

Overview of the Course

The final grade consists of two parts:

- Test - 40\% (2 assignments)
- Final Project -60% ($7-10 \mathrm{~min}$. project proposal is due on October 17th in class presentation).

A project has to be self-sufficient, i.e., it has to contain:
\checkmark brief introduction,
\checkmark description of a problem,
\checkmark solution of a problem,
\checkmark examples/practical results,
\checkmark list of references.

The following two types of projects are possible:
1 Solution of a research problem relevant to the student's area of interest.
2 Independent study of a topic not covered in the course (e.g., reading a scientific article or book chapter).

- Application of linear programming in game theory
- Survey on algebraic framework of differential forms
- A realization problem (input-output to state-space)
- Implementation of scientific results in Mathematica or MATLAB environments
- Time scales theory based toolbox for MATLAB
- Survey on structural properties of linear switched
- Survey on networked control systems
- Modeling a laboratory object
- Modeling and implementation of fractance networks for control applications

Overview of the Course

Class	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Topic																

Test \& Co

Mathematical Programming
Control Theory

Fractional-order Calculus
Neural Networks
Practice

Any questions about organizing part of the course?

"Per aspera ad astra."
Lucius Annaeus Seneca
" Through hardships to the stars."

Mathematical Programming

A phone dealer goes to the wholesale market with 1500 EUR to purchase phones for selling. In the market there are various types of phones available. From quality point of view, he finds that the phone of type P_{1} and type P_{2} are suitable. The cost price of type P_{1} phone is 300 EUR/item and that of type P_{2} is 250 EUR/item. He knows that one phone of the type P_{1} can be sold for 325 EUR, while phone of the type P_{2} can be sold for 265 EUR. Within the available amount of money he would like to make maximum profit. His problem is to find out how many type P_{1} and type P_{2} phones should be purchased so to get the maximum profit.

Mathematical Programming

A phone dealer goes to the wholesale market with 1500 EUR to purchase phones for selling. In the market there are various types of phones available. From quality point of view, he finds that the phone of type P_{1} and type P_{2} are suitable. The cost price of type P_{1} phone is 300 EUR/item and that of type P_{2} is 250 EUR/item. He knows that one phone of the type P_{1} can be sold for 325 EUR, while phone of the type P_{2} can be sold for 265 EUR. Within the available amount of money he would like to make maximum profit. His problem is to find out how many type P_{1} and type P_{2} phones should be purchased so to get the maximum profit.

Mathematical Programming

A phone dealer goes to the wholesale market with 1500 EUR to purchase phones for selling. In the market there are various types of phones available. From quality point of view, he finds that the phone of type P_{1} and type P_{2} are suitable. The cost price of type P_{1} phone is 300 EUR/item and that of type P_{2} is 250 EUR/item. He knows that one phone of the type P_{1} can be sold for 325 EUR, while phone of the type P_{2} can be sold for 265 EUR. Within the available amount of money he would like to make maximum profit. His problem is to find out how many type P_{1} and type P_{2} phones should be purchased so to get the maximum profit.

Mathematical Programming

A phone dealer goes to the wholesale market with 1500 EUR to purchase phones for selling. In the market there are various types of phones available. From quality point of view, he finds that the phone of type P_{1} and type P_{2} are suitable. The cost price of type P_{1} phone is 300 EUR/item and that of type P_{2} is 250 EUR/item. He knows that one phone of the type P_{1} can be sold for 325 EUR, while phone of the type P_{2} can be sold for 265 EUR. Within the available amount of money he would like to make maximum profit. His problem is to find out how many type P_{1} and type P_{2} phones should be purchased so to get the maximum profit.

Mathematical Programming

A phone dealer goes to the wholesale market with 1500 EUR to purchase phones for selling. In the market there are various types of phones available. From quality point of view, he finds that the phone of type P_{1} and type P_{2} are suitable. The cost price of type P_{1} phone is 300 EUR/item and that of type P_{2} is 250 EUR/item. He knows that one phone of the type P_{1} can be sold for 325 EUR, while phone of the type P_{2} can be sold for 265 EUR. Within the available amount of money he would like to make maximum profit. His problem is to find out how many type P_{1} and type P_{2} phones should be purchased so to get the maximum profit.

Mathematical Programming

A phone dealer goes to the wholesale market with 1500 EUR to purchase phones for selling. In the market there are various types of phones available. From quality point of view, he finds that the phone of type P_{1} and type P_{2} are suitable. The cost price of type P_{1} phone is 300 EUR/item and that of type P_{2} is 250 EUR/item. He knows that one phone of the type P_{1} can be sold for 325 EUR, while phone of the type P_{2} can be sold for 265 EUR. Within the available amount of money he would like to make maximum profit. His problem is to find out how many type P_{1} and type P_{2} phones should be purchased so to get the maximum profit.

Mathematical Programming

A phone dealer goes to the wholesale market with 1500 EUR to purchase phones for selling. In the market there are various types of phones available. From quality point of view, he finds that the phone of type P_{1} and type P_{2} are suitable. The cost price of type P_{1} phone is 300 EUR/item and that of type P_{2} is 250 EUR/item. He knows that one phone of the type P_{1} can be sold for 325 EUR, while phone of the type P_{2} can be sold for 265 EUR. Within the available amount of money he would like to make maximum profit. His problem is to find out how many type P_{1} and type P_{2} phones should be purchased so to get the maximum profit.

Mathematical Programming

A phone dealer goes to the wholesale market with 1500 EUR to purchase phones for selling. In the market there are various types of phones available. From quality point of view, he finds that the phone of type P_{1} and type P_{2} are suitable. The cost price of type P_{1} phone is 300 EUR/item and that of type P_{2} is 250 EUR/item. He knows that one phone of the type P_{1} can be sold for 325 EUR, while phone of the type P_{2} can be sold for 265 EUR. Within the available amount of money he would like to make maximum profit. His problem is to find out how many type P_{1} and type P_{2} phones should be purchased so to get the maximum profit.

Table: Small summary

	P_{1}	P_{2}
Outcome	300	250
Income	325	265

Mathematical Programming

Introductory example: Table

P_{1}	P_{2}	Investment	Amount after sale	Profit
0	6	$0 \cdot 300+6 \cdot 250=1500$	$0 \cdot 325+6 \cdot 265=1590$	$1590-1500=90$

Mathematical Programming

P_{1}	P_{2}	Investment	Amount after sale	Profit
0	6	$0 \cdot 300+6 \cdot 250=1500$	$0 \cdot 325+6 \cdot 265=1590$	$1590-1500=90$
1	4	$1 \cdot 300+4 \cdot 250=1300$	$1 \cdot 325+4 \cdot 265=1385$	85

Mathematical Programming

P_{1}	P_{2}	Investment	Amount after sale	Profit
0	6	$0 \cdot 300+6 \cdot 250=1500$	$0 \cdot 325+6 \cdot 265=1590$	$1590-1500=90$
1	4	$1 \cdot 300+4 \cdot 250=1300$	$1 \cdot 325+4 \cdot 265=1385$	85
2	3	$2 \cdot 300+3 \cdot 250=1350$	$2 \cdot 325+3 \cdot 265=1445$	95

Mathematical Programming

P_{1}	P_{2}	Investment	Amount after sale	Profit
0	6	$0 \cdot 300+6 \cdot 250=1500$	$0 \cdot 325+6 \cdot 265=1590$	$1590-1500=90$
1	4	$1 \cdot 300+4 \cdot 250=1300$	$1 \cdot 325+4 \cdot 265=1385$	85
2	3	$2 \cdot 300+3 \cdot 250=1350$	$2 \cdot 325+3 \cdot 265=1445$	95
3	2	$3 \cdot 300+2 \cdot 250=1400$	$3 \cdot 325+2 \cdot 265=1505$	105

Mathematical Programming

P_{1}	P_{2}	Investment	Amount after sale	Profit
0	6	$0 \cdot 300+6 \cdot 250=1500$	$0 \cdot 325+6 \cdot 265=1590$	$1590-1500=90$
1	4	$1 \cdot 300+4 \cdot 250=1300$	$1 \cdot 325+4 \cdot 265=1385$	85
2	3	$2 \cdot 300+3 \cdot 250=1350$	$2 \cdot 325+3 \cdot 265=1445$	95
3	2	$3 \cdot 300+2 \cdot 250=1400$	$3 \cdot 325+2 \cdot 265=1505$	105
4	1	$4 \cdot 300+1 \cdot 250=1450$	$4 \cdot 325+1 \cdot 265=1565$	115

Mathematical Programming

P_{1}	P_{2}	Investment	Amount after sale	Profit
0	6	$0 \cdot 300+6 \cdot 250=1500$	$0 \cdot 325+6 \cdot 265=1590$	$1590-1500=90$
1	4	$1 \cdot 300+4 \cdot 250=1300$	$1 \cdot 325+4 \cdot 265=1385$	85
2	3	$2 \cdot 300+3 \cdot 250=1350$	$2 \cdot 325+3 \cdot 265=1445$	95
3	2	$3 \cdot 300+2 \cdot 250=1400$	$3 \cdot 325+2 \cdot 265=1505$	105
4	1	$4 \cdot 300+1 \cdot 250=1450$	$4 \cdot 325+1 \cdot 265=1565$	115
5	0	$5 \cdot 300+0 \cdot 250=1500$	$5 \cdot 325+0 \cdot 265=1625$	125

Mathematical Programming

P_{1}	P_{2}	Investment	Amount after sale	Profit
0	6	$0 \cdot 300+6 \cdot 250=1500$	$0 \cdot 325+6 \cdot 265=1590$	$1590-1500=90$
1	4	$1 \cdot 300+4 \cdot 250=1300$	$1 \cdot 325+4 \cdot 265=1385$	85
2	3	$2 \cdot 300+3 \cdot 250=1350$	$2 \cdot 325+3 \cdot 265=1445$	95
3	2	$3 \cdot 300+2 \cdot 250=1400$	$3 \cdot 325+2 \cdot 265=1505$	105
4	1	$4 \cdot 300+1 \cdot 250=1450$	$4 \cdot 325+1 \cdot 265=1565$	115
5	0	$5 \cdot 300+0 \cdot 250=1500$	$5 \cdot 325+0 \cdot 265=1625$	125

Decision: 5 phones of type P_{1} should be purchased.

Mathematical Programming

Mathematical programming problem can be written in the general form as

$$
\begin{aligned}
g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \leq 0 \\
g_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \leq 0 \\
& \vdots \\
g_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \leq 0 \\
\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \in S \subset \mathbb{R}^{n}
\end{aligned}
$$

Mathematical Programming

Definition

The function to be maximized

$$
z=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow \max
$$

or minimized

$$
z=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow \min
$$

is called the objective function.

Definition

The limitations on resources which are to be allocated among various competing variables are in the form of equations or inequalities and are called constraints or restrictions.

Linear Programming Problem

Definition

A linear programming problem may be defined as the problem of maximizing or minimizing a linear function subject to linear constraints.

The standard maximum problem can be stated as: Find a vector $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$, to maximize

$$
z=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

subject to the constraints

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & \leq b_{1} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & \leq b_{m}
\end{aligned}
$$

and

$$
x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
$$

Linear Programming Problem

Some more definitions

Definition

A vector x for the optimization problem is said to be feasible if it satisfies all the constraints.

Definition
Δ vector x is optimal if it feasible and optimizes the objective function over feasible x

Definition

A linear programming problem is said to be feasible if there exist a feasible vector x for it; otherwise, it is said to be infeasible

[^0]
Linear Programming Problem

Definition

A vector x for the optimization problem is said to be feasible if it satisfies all the constraints.

Definition

A vector x is optimal if it feasible and optimizes the objective function over feasible x.

Definition
A linear programming problem is said to be feasible if there exist a feasible vector x for it; otherwise, it is said to be infeasible

```
Lemma
Ever.. linear programming problem is either bounded feasible, unbounded feasible, or
infeasible
```


Linear Programming Problem

Definition

A vector x for the optimization problem is said to be feasible if it satisfies all the constraints.

Definition

A vector x is optimal if it feasible and optimizes the objective function over feasible x.

Definition

A linear programming problem is said to be feasible if there exist a feasible vector x for it; otherwise, it is said to be infeasible.

Lemma
Every linear programming problem is either bounded feasible, unbounded feasible, or infeasible.

Linear Programming Problem

Definition

A vector x for the optimization problem is said to be feasible if it satisfies all the constraints.

Definition

A vector x is optimal if it feasible and optimizes the objective function over feasible x.

Definition

A linear programming problem is said to be feasible if there exist a feasible vector x for it; otherwise, it is said to be infeasible.

Lemma

Every linear programming problem is either bounded feasible, unbounded feasible, or infeasible.

Linear Programming Problem

Suppose that

$$
X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right], \quad C=\left[\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right],
$$

then linear programming problem can be rewritten in the standard or canonical matrix form as

Standard	Canonical
$z=C X \rightarrow \max (\min)$	$z=C X \rightarrow \max (\min)$
$A X \leq B$	$A X=B$
$X \geq 0$	$X \geq 0$

Linear Programming Problem

The formulation involves the following 3 steps:
11 identify the decision variables to be determined and express them in terms of algebraic symbols such as $x_{1}, x_{2}, \ldots, x_{n}$;

2 identify the objective which is to be optimized (maximized or minimized) and express it as a linear function of the above defined decision variables;
identify all the limitations in the given problem and then express them as linear equations or inequalities in terms of above defined decision variables.

Linear Programming Problem

The formulation involves the following 3 steps:
11 identify the decision variables to be determined and express them in terms of algebraic symbols such as $x_{1}, x_{2}, \ldots, x_{n}$;

2 identify the objective which is to be optimized (maximized or minimized) and express it as a linear function of the above defined decision variables;

[^1]The formulation involves the following 3 steps:
11 identify the decision variables to be determined and express them in terms of algebraic symbols such as $x_{1}, x_{2}, \ldots, x_{n}$;

2 identify the objective which is to be optimized (maximized or minimized) and express it as a linear function of the above defined decision variables;

3 identify all the limitations in the given problem and then express them as linear equations or inequalities in terms of above defined decision variables.

Linear Programming Problem

Solving linear programming problem is nothing but determining the values of decision variables that maximizes or minimizes the given effective measure satisfying all the constraints.

- Graphical method.
- Analytical method or trial and error method.
- Simplex method.
- Big-M method.
- Two phase simplex method.
- Dual simplex method.
- Revised simplex method.

Common Linear Programming Problems

A company manufactures two types of products P_{1} and P_{2} and sells them at a profit of 2 EUR and 3 EUR, respectively. Each product is processed on two machines M_{1} and M_{2}. P_{1} requires 1 minute of processing time on M_{1} and 2 minutes on M_{2}, type P_{2} requires 1 minute on M_{1} and 1 minute on M_{2}. The machine M_{1} is available for not more than 6 hours and 40 minutes, while machine M_{2} is available for 10 hours during one working day.

Common Linear Programming Problems

A company manufactures two types of products P_{1} and P_{2} and sells them at a profit of 2 EUR and 3 EUR, respectively. Each product is processed on two machines M_{1} and M_{2}. P_{1} requires 1 minute of processing time on M_{1} and 2 minutes on M_{2}, type P_{2} requires 1 minute on M_{1} and 1 minute on M_{2}. The machine M_{1} is available for not more than 6 hours and 40 minutes, while machine M_{2} is available for 10 hours during one working day.

Machine	Processing time		Available time
	P_{1}	P_{2}	
M_{1}	1	1	400
M_{2}	2	1	600
Profit	2	3	

Problem

Maximize the profit of the company.

Common Linear Programming Problems

- x_{1} - the number of products of type P_{1},
- x_{2} - the number of products of type P_{2}.

The profit on selling:

- x_{1} units of type P_{1} is 2 EUR per product $\Longrightarrow 2 x_{1}$,
- x_{2} units of type P_{2} is 3 EUR per product $\Longrightarrow 3 x_{2}$.

Therefore, total profit on selling x_{1} units of type P_{1} and x_{2} units of type P_{2} is given by (objective function)

$$
z=2 x_{1}+3 x_{2}
$$

Common Linear Programming Problems

Machine M_{1} takes 1 minute time on type P_{1} and 1 minute time on type P_{2} \Longrightarrow the total number of minutes required on machine M_{1} is given by $x_{1}+x_{2}$. Availability: not more than 6 hours and 40 minutes.

$$
x_{1}+x_{2} \leq 400
$$

The total number of minutes required on machine M_{2} is given by $2 x_{1}+x_{2}$. Availability: not more than 10 hours.

$$
2 x_{1}+x_{2} \leq 600
$$

CANNOT produce negative quantities

$$
x_{1} \geq 0, x_{2} \geq 0
$$

Common Linear Programming Problems

The problem is to find x_{1} and x_{2} which maximize the objective function z and can be formally written as

$$
\begin{aligned}
z=2 x_{1}+3 x_{2} & \rightarrow \max \\
x_{1}+x_{2} & \leq 400 \\
2 x_{1}+x_{2} & \leq 600 \\
x_{1} \geq 0, x_{2} & \geq 0 .
\end{aligned}
$$

Common Linear Programming Problems

Let there be three different types of food F_{1}, F_{2}, F_{3}, that supply varying quantities of 2 nutrients N_{1}, N_{2}.

Suppose a person has decided to make an individual plan to improve the health.
We know that 400 g and 1 kg are the minimum daily requirements of nutrients N_{1} and N_{2}, respectively. Moreover, the corresponding unit of food F_{1}, F_{2}, F_{3} costs 2,4 and 3 EUR, respectively. Finally, we know that

- one unit of food F_{1} contains 20 g of nutrient N_{1} and 40 g of nutrient N_{2};
- one unit of food F_{2} contains 25 g of nutrient N_{1} and 62 g of nutrient N_{2};
- one unit of food F_{3} contains 30 g of nutrient N_{1} and 75 g of nutrient N_{2}.

Common Linear Programming Problems

The given information can be arranged in the form of the following table:

Nutrients	Food			Requirement/day
	F_{1}	F_{2}	F_{3}	
N_{1}	20	25	30	400
N_{2}	40	62	75	1000
Price	2	4	3	

Problem

Supply the required nutrients at minimum cost.

Tables are good! Why? \rightarrow see the next slide ...

Common Linear Programming Problems

Let x_{i} for $i=1,2,3$ be the number of units of food F_{i} to be purchased per day. The problem can be formally written as

$$
\begin{aligned}
z=2 x_{1}+4 x_{2}+3 x_{3} & \rightarrow \min \\
20 x_{1}+25 x_{2}+30 x_{3} & \geq 400 \\
40 x_{1}+62 x_{2}+75 x_{3} & \geq 1000 \\
x_{1} \geq 0, x_{2} \geq 0, x_{3} & \geq 0
\end{aligned}
$$

Common Linear Programming Problems

- 3 warehouses W_{i} for $i=1, \ldots, 3$ with commodity of the same type in amount of 200, 300, 450 units
- 4 consumers C_{j} for $j=1, \ldots, 4$ who want to receive at least $150,300,150,200$ units of the commodity.

The cost of transporting one unit of the commodity from warehouse W_{i} to consumer C_{j} together with available information are summarized in the following table:

Warehouse	Consumers				Reserve
	C_{1}	C_{2}	C_{3}	C_{4}	
W_{1}	3	2	7	1	200
W_{2}	1	4	5	2	300
W_{3}	2	7	4	3	450
Requirement	150	300	150	200	

Problem

Meet the consumer requirements at minimum transportation cost.

Common Linear Programming Problems

The transportation problem: Modeling
The total transportation cost is

$$
\begin{aligned}
z=3 x_{11}+2 x_{12}+7 x_{13}+x_{14}+x_{21} & +4 x_{22}+ \\
& +5 x_{23}+2 x_{24}+2 x_{31}+7 x_{32}+4 x_{33}+3 x_{34} \rightarrow \min .
\end{aligned}
$$

The amount sent from and available at the warehouse W_{i} yields

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13}+x_{14} \leq 200 \\
& x_{21}+x_{22}+x_{23}+x_{24} \leq 300 \\
& x_{31}+x_{32}+x_{33}+x_{34} \leq 450
\end{aligned}
$$

The amount sent to and required by the consumer C_{j} results in

$$
\begin{aligned}
& x_{11}+x_{21}+x_{31} \geq 150 \\
& x_{12}+x_{22}+x_{32} \geq 300 \\
& x_{13}+x_{23}+x_{33} \geq 150 \\
& x_{14}+x_{24}+x_{34} \geq 200
\end{aligned}
$$

Negative amount from W_{i} to C_{j} is not allowed

Common Linear Programming Problems

The total transportation cost is

$$
\begin{aligned}
z=3 x_{11}+2 x_{12}+7 x_{13}+x_{14}+x_{21} & +4 x_{22}+ \\
& +5 x_{23}+2 x_{24}+2 x_{31}+7 x_{32}+4 x_{33}+3 x_{34} \rightarrow \min .
\end{aligned}
$$

The amount sent from and available at the warehouse W_{i} yields

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13}+x_{14} \leq 200 \\
& x_{21}+x_{22}+x_{23}+x_{24} \leq 300 \\
& x_{31}+x_{32}+x_{33}+x_{34} \leq 450
\end{aligned}
$$

The amount sent to and required by the consumer C_{j} results in
$x_{11}+x_{21}+x_{31} \geq 150$ $x_{12}+x_{22}+x_{32} \geq 300$ $x_{13}+x_{23}+x_{33} \geq 150$ $x_{14}+x_{24}+x_{34} \geq 200$.

Negative amount from Wi to $C_{\text {. is not allowed }}$

Common Linear Programming Problems

The total transportation cost is

$$
\begin{aligned}
z=3 x_{11}+2 x_{12}+7 x_{13}+x_{14}+x_{21} & +4 x_{22}+ \\
& +5 x_{23}+2 x_{24}+2 x_{31}+7 x_{32}+4 x_{33}+3 x_{34} \rightarrow \min .
\end{aligned}
$$

The amount sent from and available at the warehouse W_{i} yields

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13}+x_{14} \leq 200 \\
& x_{21}+x_{22}+x_{23}+x_{24} \leq 300 \\
& x_{31}+x_{32}+x_{33}+x_{34} \leq 450
\end{aligned}
$$

The amount sent to and required by the consumer C_{j} results in

$$
\begin{aligned}
& x_{11}+x_{21}+x_{31} \geq 150 \\
& x_{12}+x_{22}+x_{32} \geq 300 \\
& x_{13}+x_{23}+x_{33} \geq 150 \\
& x_{14}+x_{24}+x_{34} \geq 200
\end{aligned}
$$

Negative amount from W_{i} to C_{j} is not allowed

Common Linear Programming Problems

The total transportation cost is

$$
\begin{aligned}
z=3 x_{11}+2 x_{12}+7 x_{13}+x_{14}+x_{21} & +4 x_{22}+ \\
& +5 x_{23}+2 x_{24}+2 x_{31}+7 x_{32}+4 x_{33}+3 x_{34} \rightarrow \min .
\end{aligned}
$$

The amount sent from and available at the warehouse W_{i} yields

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13}+x_{14} \leq 200 \\
& x_{21}+x_{22}+x_{23}+x_{24} \leq 300 \\
& x_{31}+x_{32}+x_{33}+x_{34} \leq 450
\end{aligned}
$$

The amount sent to and required by the consumer C_{j} results in

$$
\begin{aligned}
& x_{11}+x_{21}+x_{31} \geq 150 \\
& x_{12}+x_{22}+x_{32} \geq 300 \\
& x_{13}+x_{23}+x_{33} \geq 150 \\
& x_{14}+x_{24}+x_{34} \geq 200
\end{aligned}
$$

Negative amount from W_{i} to C_{j} is not allowed

$$
x_{i j} \geq 0, \quad i=1,2,3 \text { and } j=1, \ldots, 4
$$

A dealer has 1500 EUR only for a purchase of rice and wheat. A bag of rice costs 150 EUR and a bag of wheat costs 120 EUR. He has a storage capacity of ten bags only and the dealer gets a profit of 11 EUR and 8 EUR per bag of rice and wheat, respectively.

Formulate the problem of deciding how many bags of rice and wheat should dealer buy in order to get the maximum profit.

Mr. Bob's bakery sells bagel and muffins. To bake a dozen bagels Bob needs 5 cups of flour, 2 eggs, and one cup of sugar. To bake a dozen muffins Bob needs 4 cups of flour, 4 eggs and two cups of sugar. Bob can sell bagels in 10 EUR/dozen and muffins in 12 EUR/dozen. Bob has 50 cups of flour, 30 eggs and 20 cups of sugar. Formulate the problem of deciding how many bagels and muffins should Bob bake in order to maximize his revenue.

A small company produces two types of products bacon and cheese and sells them at a profit of 4 EUR/kg and $6 \mathrm{EUR} / \mathrm{kg}$, respectively. A student is trying to decide on lowest cost diet that provides sufficient amount of proteins and fats. He knows that bacon contains 2 units of protein $/ \mathrm{kg}, 5$ units of fat $/ \mathrm{kg}$ and cheese contains 2 units of protein $/ \mathrm{kg}$, 3 units of fat $/ \mathrm{kg}$. Moreover, for the proper diet student needs to consume 9 units of protein/day and 10 units of fat/day. Formulate the problem of deciding how much student should consume of food to meet the daily norm and the cost of food was minimal.

See you next week!

Hopefully.

[^0]: Lemma
 Every Iinear programming problem is either bounded feasible, unbounded feasible, or infeasible

[^1]: identify all the limitations in the given problem and then express them as linear equations or inequalities in terms of above defined decision variables.

