ISS0031 Modeling and Identification

Juri Belikov
Department of Computer Control,
Tallinn University of Technology
jbelikov@cc.ic.ee

November 7, 2014

One of the most important and successful applications of quantitative analysis to solving business problems has been in the physical distribution of products, commonly referred to as transportation problems.

The purpose is to minimize the cost of shipping goods from one location to another so that the needs of each arrival area are met and every shipping location operates within its capacity.

Transportation problem

Transportation problems deal with the determination of a minimum-cost plan for transporting a commodity from a number of sources to a number of destinations. To be more specific:

- Let there be m warehouses W_{1}, \ldots, W_{m} that have the commodity and n destinations (or consumers) D_{1}, \ldots, D_{n} that demand the commodity.
- At the i th warehouse, $i=1,2, \ldots, m$, there are a_{i} units of the commodity available.
- The demand at the j th destination, $j=1,2, \ldots, n$, is denoted by b_{j}.
- The cost of transporting one unit of the commodity from the i th warehouse to the j th destination (route $W_{i} D_{j}$) is $c_{i j}$.
- Let $x_{i j}$ be the numbers of the commodity that are being transported from the i th warehouse to the j th destination.

Problem

Our problem is to determine those $x_{i j}$ that will minimize the overall transportation cost. An optimal solution $x_{i j}$ to the problem is called a transportation plan.

Transportation problem

Transportation problem

The cost of transportation from $W_{i}(i=1, \ldots, m)$ to $D_{j}(j=1, \ldots, n)$ will be equal to

$$
z=c_{11} x_{11}+c_{12} x_{12}+\cdots+c_{m n} x_{m n}=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \rightarrow \min
$$

Transportation problem

Note that it is not possible to export from the warehouse W_{i} more than a_{i} :

$$
\begin{gathered}
x_{11}+x_{12}+\cdots+x_{1 n} \leq a_{1} \\
x_{21}+x_{22}+\cdots+x_{2 n} \leq a_{2} \\
\vdots \\
x_{m 1}+x_{m 2}+\cdots+x_{m n} \leq a_{m}
\end{gathered}
$$

or shortly

$$
\sum_{j=1}^{n} x_{i j} \leq a_{i}, \quad i=1,2, \ldots, m
$$

Transportation problem

Note that the consumer at destination D_{j} needs b_{j} commodity or more:

$$
\begin{gathered}
x_{11}+x_{21}+\cdots+x_{m 1} \geq b_{1} \\
x_{12}+x_{22}+\cdots+x_{m 2} \geq b_{2} \\
\vdots \\
x_{1 n}+x_{2 n}+\cdots+x_{m n} \geq b_{n}
\end{gathered}
$$

or shortly

$$
\sum_{i=1}^{m} x_{i j} \geq b_{j}, \quad j=1,2, \ldots, n
$$

Transportation problem

With the help of the above information we can construct the following table

Warehouse	Destination				Reserve
	D_{1}	D_{2}	\cdots	D_{n}	
W_{1}	c_{11}	c_{12}	\cdots	$c_{1 n}$	a_{1}
W_{2}	c_{21}	c_{22}	\cdots	$c_{2 n}$	a_{2}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
W_{m}	$c_{m 1}$	$c_{m 2}$	\cdots	$c_{m n}$	a_{m}
Requirement	b_{1}	b_{2}	\cdots	b_{n}	

Transportation problem

Denote by $b=b_{1}+b_{2}+\cdots+b_{n}$ the total requirement of commodities and by $a=a_{1}+a_{2}+\cdots+a_{m}$ the total amount of available commodities.

Theorem

Transportation problem is solvable if and only if $b \leq a$.

```
Remark
If }b>a,\mathrm{ then the transportation problem is not solvable. In this case one has to solve
non-mathematical problem either to increase reserve of commodity, or to decrease
requirements.
```


Transportation problem

Denote by $b=b_{1}+b_{2}+\cdots+b_{n}$ the total requirement of commodities and by $a=a_{1}+a_{2}+\cdots+a_{m}$ the total amount of available commodities.

Theorem

Transportation problem is solvable if and only if $b \leq a$.

Remark

If $b>a$, then the transportation problem is not solvable. In this case one has to solve non-mathematical problem either to increase reserve of commodity, or to decrease requirements.

Transportation problem

Definition

If $a=b$, then transportation problem is called balanced.

Remark

For the balanced transportation problem constraints are of the form $\sum x_{i j}=a_{i}$ and

Remark
If the transportation problem is not in the balanced form, i.e. $b<a$, then one may introduce a fictive destination D_{f} with requirement $b_{f}=a-b$, getting the problem in the balanced form.

Transportation problem

Definition

If $a=b$, then transportation problem is called balanced.

Remark

For the balanced transportation problem constraints are of the form $\sum_{j=1}^{n} x_{i j}=a_{i}$ and
$\sum_{i=1}^{m} x_{i j}=b_{j}$, respectively.

Remark
If the transportation problem is not in the balanced form, i.e. $b<a$, then one may
introduce a fictive destination D_{f} with requirement $b_{f}=a-b$, getting the problem in
the balanced form.

Transportation problem

Definition

If $a=b$, then transportation problem is called balanced.

Remark

For the balanced transportation problem constraints are of the form $\sum_{j=1}^{n} x_{i j}=a_{i}$ and
$\sum_{i=1}^{m} x_{i j}=b_{j}$, respectively.

Remark

If the transportation problem is not in the balanced form, i.e. $b<a$, then one may introduce a fictive destination D_{f} with requirement $b_{f}=a-b$, getting the problem in the balanced form.

Transportation problem

Consider the transportation problem given by the following table

Warehouse	Destination				Reserve
	D_{1}	D_{2}	D_{3}	D_{4}	
W_{1}	3	1	0	4	15
W_{2}	1	2	5	2	20
W_{3}	3	8	11	0	25
Requirement	10	10	15	20	

Transportation problem

Let us introduce the fictive destination D_{f} in which a consumer needs 5 units of goods. Since this destination is fictive, the transportation costs can be taken equal to zero.

Warehouse	Destination					Reserve
	D_{1}	D_{2}	D_{3}	D_{4}	D_{f}	
W_{1}	3	1	0	4	0	15
W_{2}	1	2	5	2	0	20
W_{3}	3	8	11	0	0	25
Requirement	10	10	15	20	5	

Transportation problem

They can be written as the following linear programming problem

$$
z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \rightarrow \min
$$

subject to constraints

$$
\begin{array}{rlrl}
\sum_{j=1}^{n} x_{i j} & =a_{i} & 1 \leq i \leq m \\
\sum_{i=1}^{m} x_{i j} & =b_{j} & 1 \leq j \leq n, \\
x_{i j} & \geq 0 & 1 \leq i \leq m, 1 \leq j \leq n,
\end{array}
$$

where $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$.

Transportation problem

Using the vector notations

$$
\begin{aligned}
x & =\left[x_{11}, \ldots, x_{1 n}, x_{21}, \ldots, x_{2 n}, \ldots, x_{m 1}, \ldots, x_{m n}\right]^{\mathrm{T}}, \\
c & =\left[c_{11}, \ldots, c_{1 n}, c_{21}, \ldots, c_{2 n}, \ldots, c_{m 1}, \ldots, c_{m n}\right]^{\mathrm{T}}, \\
b & =\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right]^{\mathrm{T}},
\end{aligned}
$$

the transportation model can be rewritten using matrix notation

$$
\begin{aligned}
z & =c^{\mathrm{T}} x \rightarrow \min \\
A x & =b \\
x & \geq 0
\end{aligned}
$$

Transportation problems are linear programming problems and can be solved by the Simplex method. Notice that there are $m n$ variables but only $m+n$ equations. To initiate the Simplex method, we have to add $m+n$ more artificial variables and solving the problem by the Simplex method seems to be a very tedious task even for moderate values of m and n. Therefore, because of practical significance and the special structure of the transportation problem we can solve it with a faster, more economical algorithm than simplex.

Transportation problem

Preliminary step:

We have to check whether the stated problem is solvable or not.

The starting basic feasible solution: northwest-corner method

We have to distribute the available units in rows and column in such a way that the sum will remain the same. We have to follow the steps given below.

11 Select the north west (upper left-hand) corner (cell) of the transportation table and allocate as many units as possible equal to the minimum between available supply and demand, i.e. $\min \left(a_{1}, b_{1}\right)$.
2 Adjust the supply and demand numbers in the respective rows and columns.
3 If the demand for the first cell is satisfied, then move horizontally to the next cell in the second column.

4 If the supply for the first row is exhausted, then move down to the first cell in the second row.

5 If for any cell, supply equals demand, then the next allocation can be made in cell either in the next row or column.

6 Continue the process until all supply and demand values are exhausted.

Transportation problem

There are 3 warehouses W_{i} for $i=1, \ldots, 3$ with commodity of the same type in amount of $a_{1}=8, a_{2}=10, a_{3}=20$ units, respectively, and there are 4 destinations (consumers) D_{j} for $j=1, \ldots, 4$ who want to receive at least $b_{1}=6, b_{2}=8, b_{3}=9, b_{4}=15$ units of the commodity, respectively. The cost of transporting one unit of the commodity from warehouse W_{i} to consumer D_{j} together with available information are summarized in the following table:

Warehouse	Destinations				Reserve
	D_{1}	D_{2}	D_{3}	D_{4}	
W_{1}	2	3	5	1	8
W_{2}	7	3	4	6	10
W_{3}	4	1	7	2	20
Requirement	6	8	9	15	38

One may see that the problem is balanced, since $\sum_{i=1}^{3} a_{i}=\sum_{j=1}^{4} b_{j}=38$.

Transportation problem

Start allocations from north-west corner, i.e. from $(1,1)$ position. Here $\min \left(a_{1}, b_{1}\right)=\min (8,6)=6$ units.
Therefore, the maximum possible units that can be allocated to this position is 6 .

Warehouse	Destinations				Reserve
	D_{1}	D_{2}	D_{3}	D_{4}	
W_{1}	${ }^{2} 6$	${ }^{3}$	${ }^{5}$	${ }^{1}$	$8-6=2$
W_{2}	${ }^{7} \times$	${ }^{3}$	${ }^{4}$	${ }^{6}$	10
W_{3}	${ }^{4} \times$	${ }^{1}$	${ }^{7}$	${ }^{2}$	20
Requirement	$6-6=0$	8	9	15	38

Transportation problem

After completion of the previous step, come across the position (1,2). Here $\min (8-6,8)=2$ units can be allocated to this position.

Warehouse	Destinations				Reserve
	D_{1}	D_{2}	D_{3}	D_{4}	
W_{1}	${ }^{2} \mathbf{6}$	${ }^{3} \mathbf{2}$	${ }^{5} \times$	${ }^{1} \times$	$2-2=0$
W_{2}	${ }^{7} \times$	${ }^{3}$	${ }^{4}$	${ }^{6}$	10
W_{3}	${ }^{4} \times$	${ }^{1}$	${ }^{7}$	${ }^{2}$	20
Requirement	0	$8-2=6$	9	15	30

Transportation problem

Now, we go to the second row, here the position $(2,1)$ is already been struck off, so consider the position $(2,2)$.
Here $\min (10,8-2)=6$ units can be allocated to this position.
This completes the allocations in second column so strike off the position $(3,2)$.

Warehouse	Destinations				Reserve
	D_{1}	D_{2}	D_{3}	D_{4}	
W_{1}	${ }^{2} \mathbf{6}$	${ }^{3} \mathbf{2}$	${ }^{5} \times$	${ }^{1} \times$	0
W_{2}	${ }^{7} \times$	${ }^{3} \mathbf{6}$	${ }^{4}$	${ }^{6}$	$10-6=4$
W_{3}	${ }^{4} \times$	${ }^{1} \times$	${ }^{7}$	${ }^{2}$	20
Requirement	0	0	9	15	24

Transportation problem

Again consider the position $(2,3)$.
Here, $\min (10-6,9)=4$ units can be allocated to this position.
This completes the allocations in second row so struck off the position $(2,4)$.

Warehouse	Destinations				Reserve
	D_{1}	D_{2}	D_{3}	D_{4}	
W_{1}	${ }^{2} \mathbf{6}$	${ }^{3} \mathbf{2}$	${ }^{5} \times$	${ }^{1} \times$	0
W_{2}	${ }^{7} \times$	${ }^{3} \mathbf{6}$	${ }^{4} \mathbf{4}$	${ }^{6} \times$	0
W_{3}	${ }^{4} \times$	${ }^{1} \times$	${ }^{7}$	${ }^{2}$	20
Requirement	0	0	$9-4=5$	15	20

Transportation problem

In the third row, positions $(3,1)$ and $(3,2)$ are already been struck off so consider the position $(3,3)$ and allocate it the maximum possible units, i.e. $\min (20,9-4)=5$ units. Finally, allocate the remaining units to the position $(3,4)$, i.e. 15 units to this position. Keeping in mind all the allocations done in the above method complete the table as follows.

Warehouse	Destinations				Reserve
	D_{1}	D_{2}	D_{3}	D_{4}	
W_{1}	${ }^{2} \mathbf{6}$	${ }^{3} \mathbf{2}$	${ }^{5} \times$	${ }^{1} \times$	8
W_{2}	${ }^{7} \times$	${ }^{3} \mathbf{6}$	${ }^{4} \mathbf{4}$	${ }^{6} \times$	10
W_{3}	${ }^{4} \times$	${ }^{1} \times$	${ }^{7} \mathbf{5}$	${ }^{2} \mathbf{1 5}$	20
Requirement	6	8	9	15	38

Transportation problem

From the above table we can see that the starting basic feasible solution is $x_{11}=6$, $x_{12}=2, x_{21}=6, x_{22}=4, x_{32}=5, x_{34}=15$, and the other variables in the table are $x_{13}=x_{14}=x_{21}=x_{24}=x_{31}=x_{32}=0$. Therefore, the cost of transportation can be calculated as

$$
\begin{aligned}
z=c_{11} x_{11}+c_{12} x_{12}+c_{22} x_{22}+c_{23} x_{23}+c_{33} x_{33} & +c_{34} x_{34}
\end{aligned}=-12+6+18+16+35+30=117 .
$$

Transportation problem

Step 0. Assume that preliminary step is accomplished and starting feasible solution is found.

Step 1. Find the multipliers $u_{i}, i=1, \ldots, m$ and $v_{j}, j=1, \ldots, n$ from the relations

$$
u_{i}+v_{j}=c_{i j}
$$

for all (i, j)-cells containing basic variables. Since there are $m+n-1$ basic variables, we get the same number of equations. However, there are $m+n$ unknown variables u_{i} and v_{j}. Therefore, one of the variables may be fixed, say equal to zero (for example $v_{1}=0$), and the equations may be used to solve for the other variables. Some of the u_{i} or v_{j} may turn out to be negative, but this does not matter. Find the indirect transportation costs as

$$
\hat{c}_{i j}=u_{i}+v_{j}
$$

for (i, j)-cells containing non-basic variables.

Step 2. Calculate

$$
\varphi=\max \left(\hat{c}_{i j}-c_{i j}\right)
$$

Check the optimality criteria, which is $\varphi=0$. If it is satisfied, then the obtained transportation plan is optimal. Otherwise, the plan can be improved. It means that we have to redistribute some amount of the commodity, say θ, which has to be put to the cell for which the difference $\hat{c}_{i j}-c_{i j}$ is maximal. However, if we add θ to that cell, we must subtract and add θ to other cells containing basic variables to keep the constraints (requirements vs. reserve) satisfied. We choose θ as large as possible, bearing in mind that negative shipments are not allowed. It means that at least one of the basic variables is put, or remains at, 0 .

Step 3. Repeat Steps 1 and 2 until the optimality criteria is satisfied.

Transportation problem

Recall the transportation table is

Warehouse	Destinations				
	D_{1}	D_{2}	D_{3}	D_{4}	Reserve
W_{1}	${ }^{2} 6$	${ }^{3}$	2	5	1
8					
W_{2}	${ }^{7}$	${ }^{3}$	6	${ }^{4}$	4
6		10			
W_{3}	4	1	${ }^{7}$	5	${ }^{2}$

Transportation problem

According to the algorithm presented above we can construct the following system of equations and solve it for $u_{i}, i=1, \ldots, 3$ and $v_{j}, j=1, \ldots, 4$

$$
\left\{\begin{array}{l}
u_{1}+v_{1}=2 \\
u_{1}+v_{2}=3 \\
u_{2}+v_{2}=3 \\
u_{2}+v_{3}=4 \\
u_{3}+v_{3}=7 \\
u_{3}+v_{4}=2
\end{array}\right.
$$

By assigning $v_{1}=0$, we get $u_{1}=2, u_{2}=2, u_{3}=5$ and $v_{1}=0, v_{2}=1, v_{3}=2, v_{4}=-3$.

Transportation problem

Now, we can add additional column and row and rewrite the transportation table as follows:

Warehouse	Destinations				Reserve	u_{i}
	D_{1}	D_{2}	D_{3}	D_{4}		
W_{1}	${ }^{2} 6$	${ }^{3} 2$	5	1	8	2
W_{2}	7	${ }^{3} 6$	${ }^{4} 4$	6	10	2
W_{3}	4	1	${ }^{7} 5$	${ }^{2} 15$	20	5
Requirement	6	8	9	15	38	
v_{j}	0	1	2	-3		

Transportation problem

Next, we calculate the indirect transportation costs as

$$
\hat{c}_{i j}=u_{i}+v_{j}
$$

for (i, j)-cells containing non-basic variables. Note that in the following table $\hat{c}_{i j}$ is placed in the left-down corner of the cell.

Warehouse	Destinations				Reserve	u_{i}
	D_{1}	D_{2}	D_{3}	D_{4}		
W_{1}	${ }^{2} 6$	${ }^{3} 2$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{array}{r} 1 \\ -1 \end{array}$	8	2
W_{2}	7 2	${ }^{3} 6$	${ }^{4} 4$	$\begin{array}{r} 6 \\ -1 \end{array}$	10	2
W_{3}	5	$\begin{aligned} & \hline 1 \\ & 6 \\ & \hline \end{aligned}$	${ }^{7} 5$	${ }^{2} 15$	20	5
Requirement	6	8	9	15	38	
v_{j}	0	1	2	-3		

Transportation problem

After that, we calculate the difference between the indirect and actual transportation costs as

$$
\hat{c}_{i j}-c_{i j} .
$$

Note that in the following table the difference is placed in the right-upper corner of the cell.

| Warehouse | Destinations | | | | | | Reserve |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |u_{i}.

Transportation problem

Now, we can easily see that $\varphi=\max \left(\hat{c}_{32}-c_{32}\right)=5$.
Since the optimality condition is not satisfied, the transportation plan can be improved.
It means that we have to redistribute some amount of the commodity. For that purpose we add θ to the cell $(3,2)$. Since we added θ to that cell, we must subtract it from cells $(2,2)$ and $(3,3)$, respectively. Finally, we have to add θ to the cell $(2,3)$ to keep the constraints satisfied.

Warehouse	Destinations				Reserve	u_{i}
	D_{1}	D_{2}	D_{3}	D_{4}		
W_{1}	${ }^{2} 6$	${ }^{3} 2$	$\begin{array}{ll} \hline 5 & -1 \\ 4 & \end{array}$	$\begin{array}{rr} 1 & -2 \\ -1 & \end{array}$	8	2
W_{2}	$\begin{array}{ll} \hline 7 & -5 \\ 2 & \end{array}$	${ }^{3} 6-\theta$	${ }^{4} 4+\theta$	$\begin{array}{rr}6 & -7 \\ -1 & \end{array}$	10	2
W_{3}	$\begin{array}{ll} \hline 4 & 1 \\ 5 & \end{array}$	$\begin{array}{lll} 1 \\ 6 \end{array} \quad \theta^{5}$	${ }^{7} 5-\theta$	${ }^{2} 15$	20	5
Requirement	6	8	9	15	38	
v_{j}	0	1	2	-3		

Transportation problem

Doing this way we can see that

$$
\theta=\max (6-\theta, 4+\theta, 5-\theta)=5
$$

After modifying the transportation plan the new table becomes:

Warehouse	Destinations					Reserve
	D_{1}	D_{2}	D_{3}	D_{4}		
W_{1}	${ }^{2} 6$	${ }^{3}$	2	5	1	8
W_{2}	${ }^{7}$	${ }^{3}$	1	${ }^{4}$	9	6
10						
W_{3}	4	${ }^{1}$	5	7	${ }^{2}$	15
Requirement	6	8	9	15	30	

From the above table we can see that the cost of transportation can be calculated as

$$
\begin{aligned}
z=c_{11} x_{11}+c_{12} x_{12}+c_{22} x_{22}+c_{23} x_{23}+c_{32} x_{32}+c_{34} x_{34} & = \\
& =12+6+3+36+5+30=107
\end{aligned}
$$

Transportation problem

Repeat Steps 1-3 of the algorithm to get the following tables:

Warehouse	Destinations				Reserve	u_{i}
	D_{1}	D_{2}	D_{3}	D_{4}		
W_{1}	${ }^{2} 6$	${ }^{3} 2-\theta$	$\begin{array}{ll} \hline 5 & -1 \\ 4 & \end{array}$	${ }_{4}^{1} \theta^{3}$	8	2
W_{2}	$\begin{array}{ll} \hline 7 & -5 \\ 2 & \end{array}$	${ }^{3} 1$	${ }^{4} 9$	$\begin{array}{ll} \hline 6 & -2 \\ 4 & \end{array}$	10	2
W_{3}	$\begin{array}{ll} \hline 4 & -4 \\ 0 & \end{array}$	${ }^{1} 5+\theta$	$\begin{array}{ll} \hline 7 & -5 \\ 2 & \end{array}$	${ }^{2} 15-\theta$	20	0
Requirement	6	8	9	15	38	
v_{j}	0	1	2	2		

for which $\theta=2$.

Transportation problem

Warehouse	Destinations				Reserve	u_{i}
	D_{1}	D_{2}	D_{3}	D_{4}		
W_{1}	${ }^{2} 6$	$\begin{array}{ll}3 & -3 \\ 0 & \end{array}$	$5 \quad-4$	${ }^{1} 2$	8	2
W_{2}	$\begin{array}{ll} \hline 7 & -2 \\ 5 & \end{array}$	${ }^{3} 1$	${ }^{4} 9$	$\begin{array}{ll} \hline 6 & -2 \\ 4 & \end{array}$	10	5
W_{3}	$\begin{array}{ll} \hline 4 & -1 \\ 3 & \\ \hline \end{array}$	${ }^{1} 7$	$\begin{array}{ll} \hline 7 & -5 \\ 2 & \\ \hline \end{array}$	${ }^{2} 13$	20	3
Requirement	6	8	9	15	38	
v_{j}	0	-2	-1	-1		

Observe that the optimality criteria is satisfied.
The minimal transportation cost is therefore

$$
\begin{aligned}
z=c_{11} x_{11}+c_{14} x_{14}+c_{22} x_{22}+c_{23} x_{23}+c_{32} x_{32}+c_{34} x_{34} & = \\
& =12+2+3+36+7+26=86 .
\end{aligned}
$$

