ISS0031 Modeling and Identification #### Juri Belikov Department of Computer Control, Tallinn University of Technology jbelikov@cc.ic.ee November 7, 2014 #### Intro One of the most important and successful applications of quantitative analysis to solving business problems has been in the physical distribution of products, commonly referred to as **transportation problems**. The **purpose** is to **minimize the cost** of shipping goods from one location to another so that the **needs** of each arrival area are **met** and every shipping location operates within its **capacity**. Transportation problems deal with the determination of a minimum-cost plan for transporting a commodity from a number of sources to a number of destinations. To be more specific: - ▶ Let there be m warehouses W_1, \ldots, W_m that have the commodity and n destinations (or consumers) D_1, \ldots, D_n that demand the commodity. - ▶ At the *i*th warehouse, i = 1, 2, ..., m, there are a_i units of the commodity available. - ▶ The demand at the *j*th destination, j = 1, 2, ..., n, is denoted by b_i . - ► The cost of transporting one unit of the commodity from the ith warehouse to the jth destination (route W_iD_j) is c_{ij}. - Let x_{ij} be the numbers of the commodity that are being transported from the *i*th warehouse to the *j*th destination. #### Problem Our **problem** is to determine those x_{ij} that will minimize the overall transportation cost. An optimal solution x_{ij} to the problem is called a **transportation plan**. Warehouse Destination The cost of transportation from W_i (i = 1, ..., m) to D_j (j = 1, ..., n) will be equal to $$z = c_{11}x_{11} + c_{12}x_{12} + \dots + c_{mn}x_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij} \to \min.$$ Note that it is not possible to export from the warehouse W_i more than a_i : $$x_{11} + x_{12} + \dots + x_{1n} \le a_1$$ $x_{21} + x_{22} + \dots + x_{2n} \le a_2$ \vdots $x_{m1} + x_{m2} + \dots + x_{mn} \le a_m$ or shortly $$\sum_{i=1}^n x_{ij} \leq a_i, \quad i=1,2,\ldots,m.$$ Note that the consumer at destination D_i needs b_i commodity or more: $$x_{11} + x_{21} + \dots + x_{m1} \ge b_1$$ $x_{12} + x_{22} + \dots + x_{m2} \ge b_2$ \vdots $x_{1n} + x_{2n} + \dots + x_{mn} \ge b_n$ or shortly $$\sum_{i=1}^m x_{ij} \geq b_j, \quad j=1,2,\ldots,n.$$ With the help of the above information we can construct the following table | Warehouse | | Desti | nation | | Reserve | |-------------|------------------------|------------------------|--------|-----------------|-----------------------| | | D_1 | D ₂ | | Dn | iveserve | | W_1 | c ₁₁ | c ₁₂ | | C _{1n} | a_1 | | W_2 | <i>c</i> ₂₁ | c ₂₂ | | c _{2n} | a ₂ | | : | : | : | : | : | : | | W_m | C _{m1} | C _{m2} | | C _{mn} | a _m | | Requirement | b_1 | b ₂ | | bn | | Denote by $b = b_1 + b_2 + \cdots + b_n$ the total requirement of commodities and by $a = a_1 + a_2 + \cdots + a_m$ the total amount of available commodities. #### Theorem Transportation problem is **solvable** if and only if $b \le a$. #### Remark If b > a, then the transportation problem is **not solvable**. In this case one has to solve non-mathematical problem either to increase reserve of commodity, or to decrease requirements. Denote by $b = b_1 + b_2 + \cdots + b_n$ the total requirement of commodities and by $a = a_1 + a_2 + \cdots + a_m$ the total amount of available commodities. #### Theorem Transportation problem is **solvable** if and only if $b \le a$. #### Remark If b > a, then the transportation problem is **not solvable**. In this case one has to solve non-mathematical problem either to increase reserve of commodity, or to decrease requirements. #### Definition If a = b, then transportation problem is called **balanced**. #### Remark For the balanced transportation problem constraints are of the form $\sum_{i=1}^{n} x_{ij} = a_i$ and $$\sum_{i=1}^{m} x_{ij} = b_j, \text{ respectively.}$$ #### Remark If the transportation problem is not in the balanced form, i.e. b < a, then one may introduce a fictive destination D_f with requirement $b_f = a - b$, getting the problem in the balanced form. 10 / 34 #### Definition If a = b, then transportation problem is called **balanced**. #### Remark For the balanced transportation problem constraints are of the form $\sum_{i=1}^{n} x_{ij} = a_i$ and $$\sum_{i=1}^{m} x_{ij} = b_j, respectively.$$ #### Remark If the transportation problem is not in the balanced form, i.e. b < a, then one may introduce a fictive destination D_f with requirement $b_f = a - b$, getting the problem in the balanced form. 10 / 34 #### Definition If a = b, then transportation problem is called **balanced**. #### Remark For the balanced transportation problem constraints are of the form $\sum_{i=1}^{n} x_{ij} = a_i$ and $$\sum_{i=1}^{m} x_{ij} = b_j, \text{ respectively.}$$ #### Remark If the transportation problem is not in the balanced form, i.e. b < a, then one may introduce a fictive destination D_f with requirement $b_f = a - b$, getting the problem in the balanced form. 10 / 34 Illustrative example: fictive destination Consider the transportation problem given by the following table | Warehouse | | Desti | nation | | Reserve | | |-----------------------|-------|-------|----------------|-------|---------|--| | | D_1 | D_2 | D ₃ | D_4 | Reserve | | | W_1 | 3 | 1 | 0 | 4 | 15 | | | W ₂ | 1 | 2 | 5 | 2 | 20 | | | <i>W</i> ₃ | 3 | 8 | 11 | 0 | 25 | | | Requirement | 10 | 10 | 15 | 20 | | | Illustrative example: fictive destination cont. Let us introduce the fictive destination D_f in which a consumer needs 5 units of goods. Since this destination is fictive, the transportation costs can be taken equal to zero. | Warehouse | | De | Reserve | | | | |----------------|-------|----------------|-----------------------|----------------|-------|---------| | vvarenouse | D_1 | D ₂ | <i>D</i> ₃ | D ₄ | D_f | reserve | | W_1 | 3 | 1 | 0 | 4 | 0 | 15 | | W_2 | 1 | 2 | 5 | 2 | 0 | 20 | | W ₃ | 3 | 8 | 11 | 0 | 0 | 25 | | Requirement | 10 | 10 | 15 | 20 | 5 | | They can be written as the following linear programming problem $$z = \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \to \min$$ subject to constraints $$\sum_{j=1}^{n} x_{ij} = a_{i}$$ $$\sum_{j=1}^{m} x_{ij} = b_{j}$$ $$1 \le i \le m,$$ $$1 \le j \le n,$$ $$x_{ij} \ge 0$$ $$1 \le i \le m, 1 \le j \le n,$$ where $$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$. #### Using the vector notations $$\begin{split} \boldsymbol{x} &= \begin{bmatrix} x_{11}, \dots, x_{1n}, x_{21}, \dots, x_{2n}, \dots, x_{m1}, \dots, x_{mn} \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{c} &= \begin{bmatrix} c_{11}, \dots, c_{1n}, c_{21}, \dots, c_{2n}, \dots, c_{m1}, \dots, c_{mn} \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{b} &= \begin{bmatrix} a_{1}, \dots, a_{m}, b_{1}, \dots, b_{n} \end{bmatrix}^{\mathrm{T}}, \end{split}$$ the transportation model can be rewritten using matrix notation $$z = c^{\mathrm{T}} x \to \min$$ $$Ax = b$$ $$x \ge 0$$ Transportation problems are linear programming problems and can be solved by the Simplex method. Notice that there are mn variables but only m+n equations. To initiate the Simplex method, we have to add m+n more artificial variables and solving the problem by the Simplex method seems to be a very tedious task even for moderate values of m and n. Therefore, because of practical significance and the special structure of the transportation problem we can solve it with a faster, more economical algorithm than simplex. Solution: method of multipliers #### Preliminary step: We have to check whether the stated problem is solvable or not. #### The starting basic feasible solution: northwest-corner method We have to distribute the available units in rows and column in such a way that the sum will remain the same. We have to follow the steps given below. - Select the north west (upper left-hand) corner (cell) of the transportation table and allocate as many units as possible equal to the minimum between available supply and demand, i.e. $\min(a_1, b_1)$. - 2 Adjust the supply and demand numbers in the respective rows and columns. - If the demand for the first cell is satisfied, then move horizontally to the next cell in the second column. - If the supply for the first row is exhausted, then move down to the first cell in the second row. - If for any cell, supply equals demand, then the next allocation can be made in cell either in the next row or column. - **6** Continue the process until all supply and demand values are exhausted. Illustrative example There are 3 warehouses W_i for $i=1,\ldots,3$ with commodity of the same type in amount of $a_1=8$, $a_2=10$, $a_3=20$ units, respectively, and there are 4 destinations (consumers) D_j for $j=1,\ldots,4$ who want to receive at least $b_1=6$, $b_2=8$, $b_3=9$, $b_4=15$ units of the commodity, respectively. The cost of transporting one unit of the commodity from warehouse W_i to consumer D_j together with available information are summarized in the following table: | Warehouse | | Destin | ations | 5 | Reserve | | |----------------|-------|--------|--------|-------|---------|--| | VValenouse | D_1 | D_2 | D_3 | D_4 | reserve | | | W_1 | 2 | 3 | 5 | 1 | 8 | | | W_2 | 7 | 3 | 4 | 6 | 10 | | | W ₃ | 4 | 1 | 7 | 2 | 20 | | | Requirement | 6 | 8 | 9 | 15 | 38 | | One may see that the problem is balanced, since $\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 38$. Start allocations from north-west corner, i.e. from (1,1) position. Here $min(a_1,b_1)=min(8,6)=6$ units. Therefore, the maximum possible units that can be allocated to this position is 6. | Warehouse | Des | tinatio | ons | | Reserve | | |----------------|-----------------------|---------|----------------|----------------|-----------|--| | VVarenouse | D_1 | D_2 | D ₃ | D ₄ | reserve | | | W_1 | ² 6 | 3 | 5 | 1 | 8 - 6 = 2 | | | W_2 | ⁷ × | 3 | 4 | 6 | 10 | | | W ₃ | 4 × | 1 | 7 | 2 | 20 | | | Requirement | 6 - 6 = 0 | 8 | 9 | 15 | 38 | | After completion of the previous step, come across the position (1,2). Here $\min(8-6,8)=2$ units can be allocated to this position. | Warehouse | | Destinati | Reserve | | | | |----------------|----------------|----------------|----------------|----------------|-----------|--| | vvarenouse | D_1 | D_1 D_2 | | D_4 | 1 Neserve | | | W_1 | ² 6 | ³ 2 | ⁵ × | ¹ × | 2 - 2 = 0 | | | W ₂ | ⁷ × | 3 | 4 | 6 | 10 | | | W ₃ | 4 × | 1 | 7 | 2 | 20 | | | Requirement | 0 | 8 - 2 = 6 | 9 | 15 | 30 | | Now, we go to the second row, here the position (2,1) is already been struck off, so consider the position (2,2). Here min(10, 8 - 2) = 6 units can be allocated to this position. This completes the allocations in second column so strike off the position (3,2). | Warehouse | | Destin | Reserve | | | |----------------|----------------|----------------|----------------|-------|------------| | VVarenouse | D_1 | D_2 | D_3 | D_4 | reserve | | W_1 | ² 6 | ³ 2 | ⁵ × | 1 × | 0 | | W_2 | ⁷ × | ³ 6 | 4 | 6 | 10 - 6 = 4 | | W ₃ | 4 × | 1 × | 7 | 2 | 20 | | Requirement | 0 | 0 | 9 | 15 | 24 | Again consider the position (2,3). Here, min(10-6,9)=4 units can be allocated to this position. This completes the allocations in second row so struck off the position (2,4). | Warehouse | | Destinations | | | | | | | |----------------|-------------------|----------------|-----------------------|-----|---------|--|--|--| | VVarchouse | D_1 D_2 D_3 | | | | Reserve | | | | | W_1 | ² 6 | ³ 2 | ⁵ × | 1 × | 0 | | | | | W_2 | ⁷ × | ³ 6 | ⁴ 4 | 6 × | 0 | | | | | W ₃ | 4 × | 1 × | 7 | 2 | 20 | | | | | Requirement | 0 | 0 | 0 9-4=5 | | 20 | | | | In the third row, positions (3,1) and (3,2) are already been struck off so consider the position (3,3) and allocate it the maximum possible units, i.e. $\min(20,9-4)=5$ units. Finally, allocate the remaining units to the position (3,4), i.e. 15 units to this position. Keeping in mind all the allocations done in the above method complete the table as follows. | Warehouse | | Destinations | | | | | | |-----------------------|----------------|----------------|----------------|------------------------|---------|--|--| | VValenouse | D_1 | D_2 | D_3 | D_4 | Reserve | | | | W_1 | ² 6 | ³ 2 | ⁵ × | 1 × | 8 | | | | W_2 | ⁷ × | ³ 6 | ⁴ 4 | 6 × | 10 | | | | <i>W</i> ₃ | 4 × | 1 × | ⁷ 5 | ² 15 | 20 | | | | Requirement | 6 | 8 | 9 | 15 | 38 | | | From the above table we can see that the starting basic feasible solution is $x_{11} = 6$, $x_{12} = 2$, $x_{21} = 6$, $x_{22} = 4$, $x_{32} = 5$, $x_{34} = 15$, and the other variables in the table are $x_{13} = x_{14} = x_{21} = x_{24} = x_{31} = x_{32} = 0$. Therefore, the cost of transportation can be calculated as $$z = c_{11}x_{11} + c_{12}x_{12} + c_{22}x_{22} + c_{23}x_{23} + c_{33}x_{33} + c_{34}x_{34} =$$ $$= 12 + 6 + 18 + 16 + 35 + 30 = 117.$$ **Step 0.** Assume that preliminary step is accomplished and starting feasible solution is found. **Step 1.** Find the multipliers u_i , $i=1,\ldots,m$ and v_j , $j=1,\ldots,n$ from the relations $$u_i + v_j = c_{ij}$$ for all (i,j)-cells containing basic variables. Since there are m+n-1 basic variables, we get the same number of equations. However, there are m+n unknown variables u_i and v_j . Therefore, one of the variables may be fixed, say equal to zero (for example $v_1=0$), and the equations may be used to solve for the other variables. Some of the u_i or v_j may turn out to be negative, but this does not matter. Find the indirect transportation costs as $$\hat{c}_{ij}=u_i+v_j$$ for (i, j)-cells containing non-basic variables. #### Step 2. Calculate $$\varphi = \max(\hat{c}_{ij} - c_{ij}).$$ Check the **optimality criteria**, which is $\varphi=0$. If it is satisfied, then the obtained transportation plan is optimal. Otherwise, the plan can be improved. It means that we have to redistribute some amount of the commodity, say θ , which has to be put to the cell for which the difference $\hat{c}_{ij}-c_{ij}$ is maximal. However, if we add θ to that cell, we must subtract and add θ to other cells containing basic variables to keep the constraints (requirements vs. reserve) satisfied. We choose θ as large as possible, bearing in mind that negative shipments are not allowed. It means that at least one of the basic variables is put, or remains at, 0. **Step 3.** Repeat Steps 1 and 2 until the optimality criteria is satisfied. ## Recall the transportation table is | Warehouse | | Reserve | | | | | |----------------|----------------|----------------|----------------|-----------------|---------|--| | vvarenouse | D_1 | D_2 D_3 | | D ₄ | reserve | | | W_1 | ² 6 | 3 2 | 5 | 1 | 8 | | | W_2 | 7 | ³ 6 | 4 4 | 6 | 10 | | | W ₃ | 4 | 1 | ⁷ 5 | ² 15 | 20 | | | Requirement | 6 | 8 | 9 | 15 | 38 | | According to the algorithm presented above we can construct the following system of equations and solve it for u_i , i = 1, ..., 3 and v_i , j = 1, ..., 4 $$\begin{cases} u_1 + v_1 = 2 \\ u_1 + v_2 = 3 \\ u_2 + v_2 = 3 \\ u_2 + v_3 = 4 \\ u_3 + v_3 = 7 \\ u_3 + v_4 = 2 \end{cases}$$ By assigning $v_1 = 0$, we get $u_1 = 2$, $u_2 = 2$, $u_3 = 5$ and $v_1 = 0$, $v_2 = 1$, $v_3 = 2$, $v_4 = -3$. Now, we can add additional column and row and rewrite the transportation table as follows: | Warehouse | | Desti | Reserve | иi | | | |----------------|----------------|----------------|----------------|-----------------|---------|---| | vvarenouse | D_1 | D_2 | D_3 | D_4 | reserve | u | | W_1 | ² 6 | 3 2 | 5 | 1 | 8 | 2 | | W ₂ | 7 | ³ 6 | 4 4 | 6 | 10 | 2 | | W ₃ | 4 | 1 | ⁷ 5 | ² 15 | 20 | 5 | | Requirement | 6 | 8 | 9 | 15 | 38 | | | Vj | 0 | 1 | 2 | -3 | | | Next, we calculate the indirect transportation costs as $$\hat{c}_{ij}=u_i+v_j$$ for (i,j)-cells containing non-basic variables. Note that in the following table \hat{c}_{ij} is placed in the **left-down** corner of the cell. | Warehouse | | Desti | nations | | Reserve | ui | | |----------------|----------------|----------------|----------------|-----------------|---------|----|--| | vvarenouse | D_1 | D_2 | D ₃ | D ₄ | reserve | u, | | | W_1 | ² 6 | 3 2 | 5
4 | 1
-1 | 8 | 2 | | | W ₂ | 7
2 | ³ 6 | 4 4 | 6
-1 | 10 | 2 | | | W ₃ | 4
5 | 1
6 | ⁷ 5 | ² 15 | 20 | 5 | | | Requirement | 6 | 8 | 9 | 15 | 38 | | | | Vj | 0 | 1 | 2 | -3 | | | | After that, we calculate the difference between the indirect and actual transportation costs as $$\hat{c}_{ij} - c_{ij}$$. Note that in the following table the difference is placed in the **right-upper** corner of the cell. | Warehouse | | Desti | Reserve | | | | |----------------|----------------|----------------|-----------------------|-----------------|---------|----------------| | vvarenouse | D_1 | D_2 | <i>D</i> ₃ | D ₄ | reserve | u _i | | W_1 | ² 6 | 3 2 | 5 -1
4 | 1 -2
-1 | 8 | 2 | | W_2 | 7 -5
2 | ³ 6 | 4 4 | 6 -7
-1 | 10 | 2 | | W ₃ | 4 1
5 | 1 5
6 | ⁷ 5 | ² 15 | 20 | 5 | | Requirement | 6 | 8 | 9 | 15 | 38 | | | Vj | 0 | 1 | 2 | -3 | | | Now, we can easily see that $\varphi = \max(\hat{c}_{32} - c_{32}) = 5$. Since the optimality condition is not satisfied, the transportation plan can be improved. It means that we have to redistribute some amount of the commodity. For that purpose we add θ to the cell (3,2). Since we added θ to that cell, we must subtract it from cells (2,2) and (3,3), respectively. Finally, we have to add θ to the cell (2,3) to keep the constraints satisfied. | Warehouse | | Desti | Reserve | | | | |----------------|----------------|--|-------------------------|-----------------|---------|----------------| | vvarenouse | D_1 | D_2 | D ₃ | D ₄ | Reserve | U _i | | W ₁ | ² 6 | ³ 2 | 5 -1
4 | 1 -2
-1 | 8 | 2 | | W ₂ | 7 -5
2 | 3 6 – θ | ⁴ 4 + θ | 6 -7
-1 | 10 | 2 | | W ₃ | 4 1
5 | $\begin{array}{ccc} 1 & \theta & 5 \\ 6 & \end{array}$ | ⁷ $5-\theta$ | ² 15 | 20 | 5 | | Requirement | 6 | 8 | 9 | 15 | 38 | | | Vj | 0 | 1 | 2 | -3 | | | Doing this way we can see that $$\theta = \max(6 - \theta, 4 + \theta, 5 - \theta) = 5.$$ After modifying the transportation plan the new table becomes: | Warehouse | | Reserve | | | | | |----------------|----------------|----------------|----------------|-----------------|------------|--| | varenouse | D_1 | D_2 | D ₃ | D ₄ | i (C3C) VC | | | W_1 | ² 6 | 3 2 | 5 | 1 | 8 | | | W ₂ | 7 | ³ 1 | 4 9 | 6 | 10 | | | W ₃ | 4 | 1 5 | 7 | ² 15 | 20 | | | Requirement | 6 | 8 | 9 | 15 | 38 | | From the above table we can see that the cost of transportation can be calculated as $$z = c_{11}x_{11} + c_{12}x_{12} + c_{22}x_{22} + c_{23}x_{23} + c_{32}x_{32} + c_{34}x_{34} =$$ $$= 12 + 6 + 3 + 36 + 5 + 30 = 107.$$ メロトス部トスミトスミト ヨ Repeat Steps 1-3 of the algorithm to get the following tables: | Warehouse | | Desti | Reserve | 11. | | | |----------------|----------------|--------------------|-----------------------|--------------------------------------|---------|----| | vvarenouse | D_1 | D_2 | <i>D</i> ₃ | D ₄ | reserve | ui | | W_1 | ² 6 | 3 2 $-\theta$ | 5 —1
4 | $\frac{1}{4}$ θ $\frac{3}{4}$ | 8 | 2 | | W_2 | 7 -5
2 | ³ 1 | 4 9 | 6 -2
4 | 10 | 2 | | W ₃ | 4 —4
0 | ¹ 5 + θ | 7 -5
2 | ² $15-\theta$ | 20 | 0 | | Requirement | 6 | 8 | 9 | 15 | 38 | | | Vj | 0 | 1 | 2 | 2 | | | for which $\theta = 2$. | Warehouse | | Destir | Reserve | 11. | | | |----------------|----------------|----------------|-----------|-----------------|---------|----------------| | vvarenouse | D_1 | D_2 | D_3 | D ₄ | reserve | u _i | | W_1 | ² 6 | 3 -3
0 | 5 -4
1 | 1 2 | 8 | 2 | | W ₂ | 7 —2
5 | 3 1 | 4 9 | 6 -2
4 | 10 | 5 | | W ₃ | 4 -1
3 | ¹ 7 | 7 -5
2 | ² 13 | 20 | 3 | | Requirement | 6 | 8 | 9 | 15 | 38 | | | Vj | 0 | -2 | -1 | -1 | | | ## Observe that the optimality criteria is satisfied. The minimal transportation cost is therefore $$\begin{split} z &= c_{11}x_{11} + c_{14}x_{14} + c_{22}x_{22} + c_{23}x_{23} + c_{32}x_{32} + c_{34}x_{34} = \\ &= 12 + 2 + 3 + 36 + 7 + 26 = 86. \end{split}$$