# ISS0031 Modeling and Identification

#### Juri Belikov

Department of Computer Control, Tallinn University of Technology

jbelikov@cc.ic.ee

November 7, 2014

#### Intro

One of the most important and successful applications of quantitative analysis to solving business problems has been in the physical distribution of products, commonly referred to as **transportation problems**.

The **purpose** is to **minimize the cost** of shipping goods from one location to another so that the **needs** of each arrival area are **met** and every shipping location operates within its **capacity**.

Transportation problems deal with the determination of a minimum-cost plan for transporting a commodity from a number of sources to a number of destinations. To be more specific:

- ▶ Let there be m warehouses  $W_1, \ldots, W_m$  that have the commodity and n destinations (or consumers)  $D_1, \ldots, D_n$  that demand the commodity.
- ▶ At the *i*th warehouse, i = 1, 2, ..., m, there are  $a_i$  units of the commodity available.
- ▶ The demand at the *j*th destination, j = 1, 2, ..., n, is denoted by  $b_i$ .
- ► The cost of transporting one unit of the commodity from the ith warehouse to the jth destination (route W<sub>i</sub>D<sub>j</sub>) is c<sub>ij</sub>.
- Let  $x_{ij}$  be the numbers of the commodity that are being transported from the *i*th warehouse to the *j*th destination.

#### Problem

Our **problem** is to determine those  $x_{ij}$  that will minimize the overall transportation cost. An optimal solution  $x_{ij}$  to the problem is called a **transportation plan**.

Warehouse



Destination

The cost of transportation from  $W_i$  (i = 1, ..., m) to  $D_j$  (j = 1, ..., n) will be equal to

$$z = c_{11}x_{11} + c_{12}x_{12} + \dots + c_{mn}x_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij} \to \min.$$

Note that it is not possible to export from the warehouse  $W_i$  more than  $a_i$ :

$$x_{11} + x_{12} + \dots + x_{1n} \le a_1$$
 $x_{21} + x_{22} + \dots + x_{2n} \le a_2$ 
 $\vdots$ 
 $x_{m1} + x_{m2} + \dots + x_{mn} \le a_m$ 

or shortly

$$\sum_{i=1}^n x_{ij} \leq a_i, \quad i=1,2,\ldots,m.$$

Note that the consumer at destination  $D_i$  needs  $b_i$  commodity or more:

$$x_{11} + x_{21} + \dots + x_{m1} \ge b_1$$
  
 $x_{12} + x_{22} + \dots + x_{m2} \ge b_2$   
 $\vdots$   
 $x_{1n} + x_{2n} + \dots + x_{mn} \ge b_n$ 

or shortly

$$\sum_{i=1}^m x_{ij} \geq b_j, \quad j=1,2,\ldots,n.$$

With the help of the above information we can construct the following table

| Warehouse   |                        | Desti                  | nation |                 | Reserve               |
|-------------|------------------------|------------------------|--------|-----------------|-----------------------|
|             | $D_1$                  | D <sub>2</sub>         |        | Dn              | iveserve              |
| $W_1$       | c <sub>11</sub>        | c <sub>12</sub>        |        | C <sub>1n</sub> | $a_1$                 |
| $W_2$       | <i>c</i> <sub>21</sub> | <b>c</b> <sub>22</sub> |        | c <sub>2n</sub> | <b>a</b> <sub>2</sub> |
| :           | :                      | :                      | :      | :               | :                     |
| $W_m$       | C <sub>m1</sub>        | C <sub>m2</sub>        |        | C <sub>mn</sub> | a <sub>m</sub>        |
| Requirement | $b_1$                  | <b>b</b> <sub>2</sub>  |        | bn              |                       |

Denote by  $b = b_1 + b_2 + \cdots + b_n$  the total requirement of commodities and by  $a = a_1 + a_2 + \cdots + a_m$  the total amount of available commodities.

#### Theorem

Transportation problem is **solvable** if and only if  $b \le a$ .

#### Remark

If b > a, then the transportation problem is **not solvable**. In this case one has to solve non-mathematical problem either to increase reserve of commodity, or to decrease requirements.

Denote by  $b = b_1 + b_2 + \cdots + b_n$  the total requirement of commodities and by  $a = a_1 + a_2 + \cdots + a_m$  the total amount of available commodities.

#### Theorem

Transportation problem is **solvable** if and only if  $b \le a$ .

#### Remark

If b > a, then the transportation problem is **not solvable**. In this case one has to solve non-mathematical problem either to increase reserve of commodity, or to decrease requirements.

#### Definition

If a = b, then transportation problem is called **balanced**.

#### Remark

For the balanced transportation problem constraints are of the form  $\sum_{i=1}^{n} x_{ij} = a_i$  and

$$\sum_{i=1}^{m} x_{ij} = b_j, \text{ respectively.}$$

#### Remark

If the transportation problem is not in the balanced form, i.e. b < a, then one may introduce a fictive destination  $D_f$  with requirement  $b_f = a - b$ , getting the problem in the balanced form.

10 / 34

#### Definition

If a = b, then transportation problem is called **balanced**.

#### Remark

For the balanced transportation problem constraints are of the form  $\sum_{i=1}^{n} x_{ij} = a_i$  and

$$\sum_{i=1}^{m} x_{ij} = b_j, respectively.$$

#### Remark

If the transportation problem is not in the balanced form, i.e. b < a, then one may introduce a fictive destination  $D_f$  with requirement  $b_f = a - b$ , getting the problem in the balanced form.

10 / 34

#### Definition

If a = b, then transportation problem is called **balanced**.

#### Remark

For the balanced transportation problem constraints are of the form  $\sum_{i=1}^{n} x_{ij} = a_i$  and

$$\sum_{i=1}^{m} x_{ij} = b_j, \text{ respectively.}$$

#### Remark

If the transportation problem is not in the balanced form, i.e. b < a, then one may introduce a fictive destination  $D_f$  with requirement  $b_f = a - b$ , getting the problem in the balanced form.

10 / 34

Illustrative example: fictive destination

Consider the transportation problem given by the following table

| Warehouse             |       | Desti | nation         |       | Reserve |  |
|-----------------------|-------|-------|----------------|-------|---------|--|
|                       | $D_1$ | $D_2$ | D <sub>3</sub> | $D_4$ | Reserve |  |
| $W_1$                 | 3     | 1     | 0              | 4     | 15      |  |
| W <sub>2</sub>        | 1     | 2     | 5              | 2     | 20      |  |
| <i>W</i> <sub>3</sub> | 3     | 8     | 11             | 0     | 25      |  |
| Requirement           | 10    | 10    | 15             | 20    |         |  |

Illustrative example: fictive destination cont.

Let us introduce the fictive destination  $D_f$  in which a consumer needs 5 units of goods. Since this destination is fictive, the transportation costs can be taken equal to zero.

| Warehouse      |       | De             | Reserve               |                |       |         |
|----------------|-------|----------------|-----------------------|----------------|-------|---------|
| vvarenouse     | $D_1$ | D <sub>2</sub> | <i>D</i> <sub>3</sub> | D <sub>4</sub> | $D_f$ | reserve |
| $W_1$          | 3     | 1              | 0                     | 4              | 0     | 15      |
| $W_2$          | 1     | 2              | 5                     | 2              | 0     | 20      |
| W <sub>3</sub> | 3     | 8              | 11                    | 0              | 0     | 25      |
| Requirement    | 10    | 10             | 15                    | 20             | 5     |         |

They can be written as the following linear programming problem

$$z = \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \to \min$$

subject to constraints

$$\sum_{j=1}^{n} x_{ij} = a_{i}$$

$$\sum_{j=1}^{m} x_{ij} = b_{j}$$

$$1 \le i \le m,$$

$$1 \le j \le n,$$

$$x_{ij} \ge 0$$

$$1 \le i \le m, 1 \le j \le n,$$

where 
$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$
.

#### Using the vector notations

$$\begin{split} \boldsymbol{x} &= \begin{bmatrix} x_{11}, \dots, x_{1n}, x_{21}, \dots, x_{2n}, \dots, x_{m1}, \dots, x_{mn} \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{c} &= \begin{bmatrix} c_{11}, \dots, c_{1n}, c_{21}, \dots, c_{2n}, \dots, c_{m1}, \dots, c_{mn} \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{b} &= \begin{bmatrix} a_{1}, \dots, a_{m}, b_{1}, \dots, b_{n} \end{bmatrix}^{\mathrm{T}}, \end{split}$$

the transportation model can be rewritten using matrix notation

$$z = c^{\mathrm{T}} x \to \min$$

$$Ax = b$$

$$x \ge 0$$

Transportation problems are linear programming problems and can be solved by the Simplex method. Notice that there are mn variables but only m+n equations. To initiate the Simplex method, we have to add m+n more artificial variables and solving the problem by the Simplex method seems to be a very tedious task even for moderate values of m and n. Therefore, because of practical significance and the special structure of the transportation problem we can solve it with a faster, more economical algorithm than simplex.

Solution: method of multipliers

#### Preliminary step:

We have to check whether the stated problem is solvable or not.

#### The starting basic feasible solution: northwest-corner method

We have to distribute the available units in rows and column in such a way that the sum will remain the same. We have to follow the steps given below.

- Select the north west (upper left-hand) corner (cell) of the transportation table and allocate as many units as possible equal to the minimum between available supply and demand, i.e.  $\min(a_1, b_1)$ .
- 2 Adjust the supply and demand numbers in the respective rows and columns.
- If the demand for the first cell is satisfied, then move horizontally to the next cell in the second column.
- If the supply for the first row is exhausted, then move down to the first cell in the second row.
- If for any cell, supply equals demand, then the next allocation can be made in cell either in the next row or column.
- **6** Continue the process until all supply and demand values are exhausted.

Illustrative example

There are 3 warehouses  $W_i$  for  $i=1,\ldots,3$  with commodity of the same type in amount of  $a_1=8$ ,  $a_2=10$ ,  $a_3=20$  units, respectively, and there are 4 destinations (consumers)  $D_j$  for  $j=1,\ldots,4$  who want to receive at least  $b_1=6$ ,  $b_2=8$ ,  $b_3=9$ ,  $b_4=15$  units of the commodity, respectively. The cost of transporting one unit of the commodity from warehouse  $W_i$  to consumer  $D_j$  together with available information are summarized in the following table:

| Warehouse      |       | Destin | ations | 5     | Reserve |  |
|----------------|-------|--------|--------|-------|---------|--|
| VValenouse     | $D_1$ | $D_2$  | $D_3$  | $D_4$ | reserve |  |
| $W_1$          | 2     | 3      | 5      | 1     | 8       |  |
| $W_2$          | 7     | 3      | 4      | 6     | 10      |  |
| W <sub>3</sub> | 4     | 1      | 7      | 2     | 20      |  |
| Requirement    | 6     | 8      | 9      | 15    | 38      |  |

One may see that the problem is balanced, since  $\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 38$ .

Start allocations from north-west corner, i.e. from (1,1) position. Here  $min(a_1,b_1)=min(8,6)=6$  units.

Therefore, the maximum possible units that can be allocated to this position is 6.

| Warehouse      | Des                   | tinatio | ons            |                | Reserve   |  |
|----------------|-----------------------|---------|----------------|----------------|-----------|--|
| VVarenouse     | $D_1$                 | $D_2$   | D <sub>3</sub> | D <sub>4</sub> | reserve   |  |
| $W_1$          | <sup>2</sup> <b>6</b> | 3       | 5              | 1              | 8 - 6 = 2 |  |
| $W_2$          | <sup>7</sup> ×        | 3       | 4              | 6              | 10        |  |
| W <sub>3</sub> | 4 ×                   | 1       | 7              | 2              | 20        |  |
| Requirement    | 6 - 6 = 0             | 8       | 9              | 15             | 38        |  |

After completion of the previous step, come across the position (1,2). Here  $\min(8-6,8)=2$  units can be allocated to this position.

| Warehouse      |                | Destinati      | Reserve        |                |           |  |
|----------------|----------------|----------------|----------------|----------------|-----------|--|
| vvarenouse     | $D_1$          | $D_1$ $D_2$    |                | $D_4$          | 1 Neserve |  |
| $W_1$          | <sup>2</sup> 6 | <sup>3</sup> 2 | <sup>5</sup> × | <sup>1</sup> × | 2 - 2 = 0 |  |
| W <sub>2</sub> | <sup>7</sup> × | 3              | 4              | 6              | 10        |  |
| W <sub>3</sub> | 4 ×            | 1              | 7              | 2              | 20        |  |
| Requirement    | 0              | 8 - 2 = 6      | 9              | 15             | 30        |  |

Now, we go to the second row, here the position (2,1) is already been struck off, so consider the position (2,2).

Here min(10, 8 - 2) = 6 units can be allocated to this position.

This completes the allocations in second column so strike off the position (3,2).

| Warehouse      |                | Destin         | Reserve        |       |            |
|----------------|----------------|----------------|----------------|-------|------------|
| VVarenouse     | $D_1$          | $D_2$          | $D_3$          | $D_4$ | reserve    |
| $W_1$          | <sup>2</sup> 6 | <sup>3</sup> 2 | <sup>5</sup> × | 1 ×   | 0          |
| $W_2$          | <sup>7</sup> × | <sup>3</sup> 6 | 4              | 6     | 10 - 6 = 4 |
| W <sub>3</sub> | 4 ×            | 1 ×            | 7              | 2     | 20         |
| Requirement    | 0              | 0              | 9              | 15    | 24         |

Again consider the position (2,3).

Here, min(10-6,9)=4 units can be allocated to this position.

This completes the allocations in second row so struck off the position (2,4).

| Warehouse      |                   | Destinations   |                       |     |         |  |  |  |
|----------------|-------------------|----------------|-----------------------|-----|---------|--|--|--|
| VVarchouse     | $D_1$ $D_2$ $D_3$ |                |                       |     | Reserve |  |  |  |
| $W_1$          | <sup>2</sup> 6    | <sup>3</sup> 2 | <sup>5</sup> ×        | 1 × | 0       |  |  |  |
| $W_2$          | <sup>7</sup> ×    | <sup>3</sup> 6 | <sup>4</sup> <b>4</b> | 6 × | 0       |  |  |  |
| W <sub>3</sub> | 4 ×               | 1 ×            | 7                     | 2   | 20      |  |  |  |
| Requirement    | 0                 | 0              | 0 9-4=5               |     | 20      |  |  |  |

In the third row, positions (3,1) and (3,2) are already been struck off so consider the position (3,3) and allocate it the maximum possible units, i.e.  $\min(20,9-4)=5$  units. Finally, allocate the remaining units to the position (3,4), i.e. 15 units to this position. Keeping in mind all the allocations done in the above method complete the table as follows.

| Warehouse             |                | Destinations   |                |                        |         |  |  |
|-----------------------|----------------|----------------|----------------|------------------------|---------|--|--|
| VValenouse            | $D_1$          | $D_2$          | $D_3$          | $D_4$                  | Reserve |  |  |
| $W_1$                 | <sup>2</sup> 6 | <sup>3</sup> 2 | <sup>5</sup> × | 1 ×                    | 8       |  |  |
| $W_2$                 | <sup>7</sup> × | <sup>3</sup> 6 | <sup>4</sup> 4 | 6 ×                    | 10      |  |  |
| <i>W</i> <sub>3</sub> | 4 ×            | 1 ×            | <sup>7</sup> 5 | <sup>2</sup> <b>15</b> | 20      |  |  |
| Requirement           | 6              | 8              | 9              | 15                     | 38      |  |  |

From the above table we can see that the starting basic feasible solution is  $x_{11} = 6$ ,  $x_{12} = 2$ ,  $x_{21} = 6$ ,  $x_{22} = 4$ ,  $x_{32} = 5$ ,  $x_{34} = 15$ , and the other variables in the table are  $x_{13} = x_{14} = x_{21} = x_{24} = x_{31} = x_{32} = 0$ . Therefore, the cost of transportation can be calculated as

$$z = c_{11}x_{11} + c_{12}x_{12} + c_{22}x_{22} + c_{23}x_{23} + c_{33}x_{33} + c_{34}x_{34} =$$

$$= 12 + 6 + 18 + 16 + 35 + 30 = 117.$$

**Step 0.** Assume that preliminary step is accomplished and starting feasible solution is found.

**Step 1.** Find the multipliers  $u_i$ ,  $i=1,\ldots,m$  and  $v_j$ ,  $j=1,\ldots,n$  from the relations

$$u_i + v_j = c_{ij}$$

for all (i,j)-cells containing basic variables. Since there are m+n-1 basic variables, we get the same number of equations. However, there are m+n unknown variables  $u_i$  and  $v_j$ . Therefore, one of the variables may be fixed, say equal to zero (for example  $v_1=0$ ), and the equations may be used to solve for the other variables. Some of the  $u_i$  or  $v_j$  may turn out to be negative, but this does not matter. Find the indirect transportation costs as

$$\hat{c}_{ij}=u_i+v_j$$

for (i, j)-cells containing non-basic variables.

#### Step 2. Calculate

$$\varphi = \max(\hat{c}_{ij} - c_{ij}).$$

Check the **optimality criteria**, which is  $\varphi=0$ . If it is satisfied, then the obtained transportation plan is optimal. Otherwise, the plan can be improved. It means that we have to redistribute some amount of the commodity, say  $\theta$ , which has to be put to the cell for which the difference  $\hat{c}_{ij}-c_{ij}$  is maximal. However, if we add  $\theta$  to that cell, we must subtract and add  $\theta$  to other cells containing basic variables to keep the constraints (requirements vs. reserve) satisfied. We choose  $\theta$  as large as possible, bearing in mind that negative shipments are not allowed. It means that at least one of the basic variables is put, or remains at, 0.

**Step 3.** Repeat Steps 1 and 2 until the optimality criteria is satisfied.

## Recall the transportation table is

| Warehouse      |                | Reserve        |                |                 |         |  |
|----------------|----------------|----------------|----------------|-----------------|---------|--|
| vvarenouse     | $D_1$          | $D_2$ $D_3$    |                | D <sub>4</sub>  | reserve |  |
| $W_1$          | <sup>2</sup> 6 | 3 2            | 5              | 1               | 8       |  |
| $W_2$          | 7              | <sup>3</sup> 6 | 4 4            | 6               | 10      |  |
| W <sub>3</sub> | 4              | 1              | <sup>7</sup> 5 | <sup>2</sup> 15 | 20      |  |
| Requirement    | 6              | 8              | 9              | 15              | 38      |  |

According to the algorithm presented above we can construct the following system of equations and solve it for  $u_i$ , i = 1, ..., 3 and  $v_i$ , j = 1, ..., 4

$$\begin{cases} u_1 + v_1 = 2 \\ u_1 + v_2 = 3 \\ u_2 + v_2 = 3 \\ u_2 + v_3 = 4 \\ u_3 + v_3 = 7 \\ u_3 + v_4 = 2 \end{cases}$$

By assigning  $v_1 = 0$ , we get  $u_1 = 2$ ,  $u_2 = 2$ ,  $u_3 = 5$  and  $v_1 = 0$ ,  $v_2 = 1$ ,  $v_3 = 2$ ,  $v_4 = -3$ .

Now, we can add additional column and row and rewrite the transportation table as follows:

| Warehouse      |                | Desti          | Reserve        | иi              |         |   |
|----------------|----------------|----------------|----------------|-----------------|---------|---|
| vvarenouse     | $D_1$          | $D_2$          | $D_3$          | $D_4$           | reserve | u |
| $W_1$          | <sup>2</sup> 6 | 3 2            | 5              | 1               | 8       | 2 |
| W <sub>2</sub> | 7              | <sup>3</sup> 6 | 4 4            | 6               | 10      | 2 |
| W <sub>3</sub> | 4              | 1              | <sup>7</sup> 5 | <sup>2</sup> 15 | 20      | 5 |
| Requirement    | 6              | 8              | 9              | 15              | 38      |   |
| Vj             | 0              | 1              | 2              | -3              |         |   |

Next, we calculate the indirect transportation costs as

$$\hat{c}_{ij}=u_i+v_j$$

for (i,j)-cells containing non-basic variables. Note that in the following table  $\hat{c}_{ij}$  is placed in the **left-down** corner of the cell.

| Warehouse      |                | Desti          | nations        |                 | Reserve | ui |  |
|----------------|----------------|----------------|----------------|-----------------|---------|----|--|
| vvarenouse     | $D_1$          | $D_2$          | D <sub>3</sub> | D <sub>4</sub>  | reserve | u, |  |
| $W_1$          | <sup>2</sup> 6 | 3 2            | 5<br>4         | 1<br>-1         | 8       | 2  |  |
| W <sub>2</sub> | 7<br>2         | <sup>3</sup> 6 | 4 4            | 6<br>-1         | 10      | 2  |  |
| W <sub>3</sub> | 4<br>5         | 1<br>6         | <sup>7</sup> 5 | <sup>2</sup> 15 | 20      | 5  |  |
| Requirement    | 6              | 8              | 9              | 15              | 38      |    |  |
| Vj             | 0              | 1              | 2              | -3              |         |    |  |

After that, we calculate the difference between the indirect and actual transportation costs as

$$\hat{c}_{ij} - c_{ij}$$
.

Note that in the following table the difference is placed in the **right-upper** corner of the cell.

| Warehouse      |                | Desti          | Reserve               |                 |         |                |
|----------------|----------------|----------------|-----------------------|-----------------|---------|----------------|
| vvarenouse     | $D_1$          | $D_2$          | <i>D</i> <sub>3</sub> | D <sub>4</sub>  | reserve | u <sub>i</sub> |
| $W_1$          | <sup>2</sup> 6 | 3 2            | 5 -1<br>4             | 1 -2<br>-1      | 8       | 2              |
| $W_2$          | 7 -5<br>2      | <sup>3</sup> 6 | 4 4                   | 6 -7<br>-1      | 10      | 2              |
| W <sub>3</sub> | 4 1<br>5       | 1 5<br>6       | <sup>7</sup> 5        | <sup>2</sup> 15 | 20      | 5              |
| Requirement    | 6              | 8              | 9                     | 15              | 38      |                |
| Vj             | 0              | 1              | 2                     | -3              |         |                |

Now, we can easily see that  $\varphi = \max(\hat{c}_{32} - c_{32}) = 5$ .

Since the optimality condition is not satisfied, the transportation plan can be improved.

It means that we have to redistribute some amount of the commodity. For that purpose we add  $\theta$  to the cell (3,2). Since we added  $\theta$  to that cell, we must subtract it from cells (2,2) and (3,3), respectively. Finally, we have to add  $\theta$  to the cell (2,3) to keep the constraints satisfied.

| Warehouse      |                | Desti                                                  | Reserve                 |                 |         |                |
|----------------|----------------|--------------------------------------------------------|-------------------------|-----------------|---------|----------------|
| vvarenouse     | $D_1$          | $D_2$                                                  | D <sub>3</sub>          | D <sub>4</sub>  | Reserve | U <sub>i</sub> |
| W <sub>1</sub> | <sup>2</sup> 6 | <sup>3</sup> 2                                         | 5 -1<br>4               | 1 -2<br>-1      | 8       | 2              |
| W <sub>2</sub> | 7 -5<br>2      | $^{3}$ 6 – $\theta$                                    | <sup>4</sup> 4 + θ      | 6 -7<br>-1      | 10      | 2              |
| W <sub>3</sub> | 4 1<br>5       | $\begin{array}{ccc} 1 & \theta & 5 \\ 6 & \end{array}$ | <sup>7</sup> $5-\theta$ | <sup>2</sup> 15 | 20      | 5              |
| Requirement    | 6              | 8                                                      | 9                       | 15              | 38      |                |
| Vj             | 0              | 1                                                      | 2                       | -3              |         |                |

Doing this way we can see that

$$\theta = \max(6 - \theta, 4 + \theta, 5 - \theta) = 5.$$

After modifying the transportation plan the new table becomes:

| Warehouse      |                | Reserve        |                |                 |            |  |
|----------------|----------------|----------------|----------------|-----------------|------------|--|
| varenouse      | $D_1$          | $D_2$          | D <sub>3</sub> | D <sub>4</sub>  | i (C3C) VC |  |
| $W_1$          | <sup>2</sup> 6 | 3 2            | 5              | 1               | 8          |  |
| W <sub>2</sub> | 7              | <sup>3</sup> 1 | 4 9            | 6               | 10         |  |
| W <sub>3</sub> | 4              | 1 5            | 7              | <sup>2</sup> 15 | 20         |  |
| Requirement    | 6              | 8              | 9              | 15              | 38         |  |

From the above table we can see that the cost of transportation can be calculated as

$$z = c_{11}x_{11} + c_{12}x_{12} + c_{22}x_{22} + c_{23}x_{23} + c_{32}x_{32} + c_{34}x_{34} =$$

$$= 12 + 6 + 3 + 36 + 5 + 30 = 107.$$

メロトス部トスミトスミト ヨ

Repeat Steps 1-3 of the algorithm to get the following tables:

| Warehouse      |                | Desti              | Reserve               | 11.                                  |         |    |
|----------------|----------------|--------------------|-----------------------|--------------------------------------|---------|----|
| vvarenouse     | $D_1$          | $D_2$              | <i>D</i> <sub>3</sub> | D <sub>4</sub>                       | reserve | ui |
| $W_1$          | <sup>2</sup> 6 | $^3$ 2 $-\theta$   | 5 —1<br>4             | $\frac{1}{4}$ $\theta$ $\frac{3}{4}$ | 8       | 2  |
| $W_2$          | 7 -5<br>2      | <sup>3</sup> 1     | 4 9                   | 6 <b>-2</b><br>4                     | 10      | 2  |
| W <sub>3</sub> | 4 —4<br>0      | <sup>1</sup> 5 + θ | 7 -5<br>2             | <sup>2</sup> $15-\theta$             | 20      | 0  |
| Requirement    | 6              | 8                  | 9                     | 15                                   | 38      |    |
| Vj             | 0              | 1                  | 2                     | 2                                    |         |    |

for which  $\theta = 2$ .

| Warehouse      |                | Destir         | Reserve   | 11.             |         |                |
|----------------|----------------|----------------|-----------|-----------------|---------|----------------|
| vvarenouse     | $D_1$          | $D_2$          | $D_3$     | D <sub>4</sub>  | reserve | u <sub>i</sub> |
| $W_1$          | <sup>2</sup> 6 | 3 -3<br>0      | 5 -4<br>1 | 1 2             | 8       | 2              |
| W <sub>2</sub> | 7 —2<br>5      | 3 1            | 4 9       | 6 -2<br>4       | 10      | 5              |
| W <sub>3</sub> | 4 -1<br>3      | <sup>1</sup> 7 | 7 -5<br>2 | <sup>2</sup> 13 | 20      | 3              |
| Requirement    | 6              | 8              | 9         | 15              | 38      |                |
| Vj             | 0              | -2             | -1        | -1              |         |                |

## Observe that the optimality criteria is satisfied.

The minimal transportation cost is therefore

$$\begin{split} z &= c_{11}x_{11} + c_{14}x_{14} + c_{22}x_{22} + c_{23}x_{23} + c_{32}x_{32} + c_{34}x_{34} = \\ &= 12 + 2 + 3 + 36 + 7 + 26 = 86. \end{split}$$