Evolutionary Design of the Closed Loop Control on the Basis of NN-ANARX Model Using Genetic Algoritm ### Principles of Genetic Algorithms Initial Population – a set of strings called Chromosomes ``` [0 1 0 1 1 0 1 0 ... 0 1 1 1 0 1] [0 0 0 0 1 1 1 0 ... 1 1 0 1 0 1] ``` • • • [0 1 0 0 0 0 1 0 ... 1 1 1 1 0 1] Calculation of **fitness function**, sort Chromosomes and choose the best ones ### Principles of Genetic Algorithms Formation of new generation: 1. Crossover 2. Mutation at random places (~1%) "Best Parents" are used in crossover and mutation more frequently 3. "New Blood" – some absolutely new chromosomes ### Principles of Genetic Algorithms ## Principles of Genetic Algorithms for selection of Neural Network's Structure For custom structure NN gene = [110101111001 111111111001] Fitness function – for example, MSE ### ANARX model ### NARX (Nonlinear Autoregressive Exogenous) model: $$y(t+n) = f(y(t), y(t+1), ..., y(t+n-1), u(t), u(t+1), ..., u(t+n-1))$$ ### ANARX (Additive Nonlinear Autoregressive Exogenous) model: $$y(t+n) = f_1(y(t), u(t)) + f_2(y(t+1), u(t+1)) + \dots + f_n(y(t+n-1), u(t+n-1))$$ $$y(t+n) = \sum_{i=1}^{n} f_i(y(t+i-1), u(t+i-1))$$ ### NN-based ANARX model (NN-ANARX) $$y(t+n) = \sum_{i=1}^{n} C_{i} \varphi_{i} \Big(W_{i} \cdot [y(t+i-1), u(t+i-1)]^{T} \Big)$$ φ_i is a sigmoid function ### ANARX Model based Dynamic Output Feedback Linearization Algorithm ### NN-ANARX model **ANARX** model $$y(t+n) = \sum_{i=1}^{n} f_i(y(t+i-1), u(t+i-1)) \qquad y(t+n) = \sum_{i=1}^{n} C_i \varphi_i \Big(W_i \cdot \big[y(t+i-1), u(t+i-1) \big]^T \Big)$$ $$\begin{cases} F = f_1(y(t), u(t)) = \eta_1(t) \\ \eta_1(t+1) = \eta_2(t) - f_2(y(t), u(t)) \end{cases}$$ $$\vdots$$ $$\eta_{n-2}(t+1) = \eta_{n-1}(t) - f_{n-1}(y(t), u(t))$$ $$\vdots$$ $$\eta_{n-1}(t+1) = v(t) - f_n(y(t), u(t))$$ $$\vdots$$ $$\eta_{n-1}(t+1) = v(t) - f_n(y(t), u(t))$$ $$y(t+n) = v(t)$$ ### NN-ANARX Model based Control of Nonlinear Systems ### Problems to be solved - A little or no knowledge about structure of the system is given a priori - A set of neural networks must be trained to find an optimal structure - Quality of the model depends on the choice of initial parameters - Quality of the model should be evaluated in the closed loop These problems can be solved using **GA**. ### GA for structural identification NN-ANARX structure may be easily coded as a gene. Consider an example (custom structure model): ### Dynamic controller based on custom structure model $$F = C_1 W_1 \left[b_{y1} y(t), b_{u1} u(t) \right]^T = \eta_1(t)$$ $$\eta_1(t+1) = \eta_2(t) - C_2 \phi_2 \left(W_2 \left(b_{y2} x_1(t), b_{u1} u(t) \right)^T \right)$$ $$\eta_{n-2}(t+1) = \eta_{n-1}(t) - C_{n-1}\phi_{n-1} \Big(W_{n-1} \big(b_{y,n-1} x_1(t), b_{u,n-1} u(t) \big)^T \Big)$$ $$\eta_{n-1}(t+1) = \nu(t) - C_n \phi_n \Big(W_n \big(b_{y,n} x_1(t), b_{u,n} u(t) \big)^T \Big)$$ Gene: $$G = (b_{y1}, b_{u1}, b_{y2}, b_{u2}, \dots b_{yn}, b_{un},)$$ ### Fitness function Model structure optimization is based on fitness function consisting of 2 parameters: - Error of the closed-loop control system - Order of the model All of the criteria are normalized ### Numerical evaluation of the criteria • $$e = 1 - e^{-k \cdot mse}$$ • $$\widehat{O}_{i=\frac{o_i}{\|o\|}}$$ where $\|.\| := \max(|o_1|, \dots, |o_n|)$ ### **Evaluation function:** $f = k_1 \cdot e + k_2 \cdot \hat{o}$ with $$k_1 + k_2 = 1$$