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Lecture overview
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• Mathematical basis of fractional-order calculus;

• Fractional-order calculus in modeling and control:

◦ Analysis of fractional models;

◦ Implementations of fractional-order systems;

◦ PIλDµ controllers and their design.

• Overview of CACSD tools and examples of practical
applications:

◦ Introduction to FOMCON toolbox for MATLAB;

◦ Control design and implementation examples.



Part I: Mathematical Basis of Fractional-order
Calculus
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Introduction: Historical facts
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• The concept of the differentiation operator D = d/dx is a
well-known fundamental tool of modern calculus. For a suitable
function f the n-th derivative is well defined as

D
nf(x) = d nf(x)/dxn, (1)

where n is a positive integer.

• What happens if we extend this concept to a situation, when
the order of differentiation is arbitrary, for example, fractional?

• That was the very same question L’Hôpital addressed to Leibniz
in a letter in 1695. Since then the concept of fractional calculus
has drawn the attention of many famous mathematicians,
including Euler, Laplace, Fourier, Liouville, Riemann, Abel.



Fractional derivative of a power function:
An approach based on intuition
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For the power function f(x) = xk the fractional derivative can be
shown to be

dαf(x)

dxα
=

Γ(k + 1)

Γ(k − α+ 1)
xk−α. (2)

The function Γ(·) above is the Gamma function—the
generalization of the factorial function:

Γ(x) =

∫ ∞

0
tx−1e−tdt, x > 0. (3)

Example:
d1/2(x2)

dx1/2
=

Γ(3)

Γ(5/2)
x

3/2 =
8x3/2

3
√
π
.



The Gamma function
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Example: fractional-order derivative of a
function f(x) = x
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Fractional derivative of a trigonometric
function: An approach based on intuition
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We observe, what happens when we repeatedly differentiate the
function f(x) = sinx:

d

dx
sinx = cosx,

d2

dx2
sinx = − sinx,

d3

dx3
sinx = − cosx, . . .

The pattern can be deduced: for the nth derivative, the function
sinx is shifted by nπ/2 radians. This can be observed from
studying the graph of the function. Thus, if we replace n by
α ∈ R

+, we have

dα

dxα
sinx = sin

(

x+
απ

2

)

. (4)

Obviously, a similar equation holds for the cosine function as well.



Half derivative of a sine function
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Repeated differentiation: Backward
difference equation
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Recall the backward difference definition of f ′(x) given by

f ′(x) = lim
h→0

f(x)− f(x− h)

h
. (5)

It follows, that

f ′′(x) = lim
h→0

f ′(x)− f ′(x− h)

h
= lim

h→0

f(x)− 2f(x− h) + f(x− 2h)

h2
.

Furthermore,

f ′′′(x) = lim
h→0

f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)

h3
.

And in general

f (n)(x) = lim
h→0

1

hn

n
∑

k=0

(−1)k
(

n

k

)

f(x− kh). (6)



Repeated differentiation: Backward
difference equation based generalization
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Can we generalize this to the case n ∈ R+?

Of course! All we need to do is to consider the factorial formula for the
binomial coefficient and use the ever so kind Gamma function to lend a helping
hand in case we have α ∈ R

+:
(

n

k

)

=
n!

k!(n− k)!
→

(

α

k

)

=
Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
. (7)

We find that this approach is the very basis for Grünwald-Letnikov’s definition
of the fractional-order derivative. In fact, here it is:

Definition 1. (Grünwald-Letnikov)

GL
D

αf(t)|t=nh = lim
h→0

1

hα

n
∑

k=0

(−1)k
(

α

k

)

f(nh− kh). (8)



Fractional-order derivative: Important
alternative definitions
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Definition 2. (Riemann-Liouville)

R
a D

α
t f(t) =

1

Γ(m− α)

(

d

dt

)m
[

∫ t

a

f(τ)

(t− τ)α−m+1
dτ

]

, (9)

where m− 1 < α < m, m ∈ N,α ∈ R
+.

Definition 3. (Caputo)

C
0 D

α
t f(t) =

1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α−m+1
dτ, (10)

where m− 1 < α < m, m ∈ N.



The generalized operator

Aleksei Tepljakov 13 / 101

Fractional calculus is a generalization of integration and
differentiation to non-integer order operator aD

α
t , where a and t

denote the limits of the operation and α denotes the fractional
order such that

aD
α
t =















dα

dtα ℜ(α) > 0,

1 ℜ(α) = 0,
∫ t
a (dτ)

−α ℜ(α) < 0,

(11)

where generally it is assumed that α ∈ R, but it may also be a
complex number. We restrict our attention to the former case.



Properties of fractional-order differentiation
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Fractional-order differentiation has the following properties:

1. If α = n and n ∈ Z
+, then the operator 0D

α
t can be

understood as the usual operator dn/dtn.

2. Operator of order α = 0 is the identity operator:

0D
0
t f(t) = f(t).

3. Fractional-order differentiation is linear; if a, b are constants,
then

0D
α
t

[

af(t) + bg(t)
]

= a 0D
α
t f(t) + b 0D

α
t g(t). (12)

4. If f(t) is an analytic function, then the fractional-order
differentiation 0D

α
t f(t) is also analytic with respect to t.



Properties of fractional-order differentiation
(continued)
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5. For the fractional-order operators with ℜ(α) > 0,ℜ(β) > 0,
and under reasonable constraints on the function f(t) it holds
the additive law of exponents:

0D
α
t

[

0D
β
t f(t)

]

= 0D
β
t

[

0D
α
t f(t)

]

= 0D
α+β
t f(t) (13)

6. The fractional-order derivative commutes with integer-order
derivative

dn

dtn
(

aD
α
t f(t)

)

= aD
α
t

(

dnf(t)

dtn

)

= aD
α+n
t f(t), (14)

and if t = a we have f (k)(a) = 0, (k = 0, 1, 2, ..., n− 1).



On the meaning of the fractional-order
derivative
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We shall call F (ft(·), t) a hereditary operator acting on a cause
process ft(·) to produce a time-shifted effect g(t) which depends
on the history of the process {ft(τ); τ < t}:

g(t) = F
[

ft(·); t
]

. (15)

We can replace g(t) by the function f(t) or its derivatives, i.e.

df(t)

dt
= F

[

ft(·); t
]

(16)

and so on. (Again we see repeated differentiation/integration.)

Some hereditary process examples from physics: Brownian motion;
Viscoelasticity; Heat transfer; Long transmission.



Exercise: Integration
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Compute a fractional-order derivative of order 1/2 for the function f(t) = t2

using the Caputo definition. Hint: Γ(1/2) =
√
π.

C
0 D

1/2
t t2 =

1

Γ(1− 1/2)

∫ t

0

(τ2)′

(t− τ)1/2−1+1
dτ = ?

Solution: Compute the indefinite integral

∫

(τ2)′

(t− τ)1/2−1+1
dτ =

∫

2τ√
t− τ

dτ =

u=t−τ
= 2

∫

u− t√
u

du = 2

∫ √
udu− 2t

∫

1/
√
udu =

4/3u
3/2 − 4t

√
u+ C = 4/3(t− τ)

3/2 − 4t
√
t− τ + C.

The answer is

1√
π
·
(

4/3(t− τ)
3/2 − 4t

√
t− τ + C

)

∣

∣

∣

∣

t

0

= 1√
π
·
(

−4/3t
3/2 + 4t

3/2
)

= 8t
3/2

3
√
π
.



Part II: Factional-order Modeling of Dynamic
Systems
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Laplace transform
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A function F (s) of the complex variable s is called the Laplace
transform of the original function f(t) and defined as

F (s) = L
[

f(t)
]

=

∫ ∞

0
e−stf(t)dt (17)

The original function f(t) can be recovered from the Laplace
transform F (s) by applying the inverse Laplace transform

f(t) = L
−1

[

F (s)
]

=
1

j2π

∫ c+j∞

c−j∞
estF (s)ds, (18)

where c is greater than the real part of all the poles of F (s).



Fractional-order derivative definitions:
Laplace transform
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Definition 4. (Riemann-Liouville)

L

[

R
D

αf(t)
]

= sαF (s)−
m−1
∑

k=0

sk
[

D
α−k−1f(t)

]

t=0
. (19)

Definition 5. (Caputo)

L

[

C
D

αf(t)
]

= sαF (s)−
m−1
∑

k=0

sα−k−1f (k)(0). (20)

Definition 6. (Grünwald-Letnikov)

L

[

L
D

αf(t)
]

= sαF (s). (21)

For the first two definitions we have (m− 1 6 α < m).



Fractional-order models
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A linear, fractional-order continuous-time dynamic system can be
expressed by a fractional differential equation of the following form

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a0D
α0y(t) = (22)

bmD
βmu(t) + bm−1D

βm−1u(t) + · · ·+ b0D
β0u(t),

where ak, bk ∈ R. The system is said to be of commensurate-order
if in (22) all the orders of derivation are integer multiples of a base
order γ such that αk, βk = kγ, γ ∈ R

+. The system can then be
expressed as

n
∑

k=0

akD
kγy(t) =

m
∑

k=0

bkD
kγu(t). (23)



Linear, time invariant fractional-order
system classification
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If in (23) the order is γ = 1/q, q ∈ Z
+, the system will be of

rational order. The diagram with linear time-invariant (LTI) system
classification is given in the following diagram.



Fractional-order transfer functions
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Applying the Laplace transform to (22) with zero initial conditions
the input-output representation of the fractional-order system can
be obtained in the form of a transfer function:

G(s) =
Y (s)

U(s)
=

bmsβm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (24)

In the case of a system with commensurate order γ we have

G(s) =

m
∑

k=0

bk (s
γ)k

n
∑

k=0

ak (sγ)
k
. (25)



Fractional-order transfer functions and
state-space representation
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Taking λ = sγ the function (25) can be viewed as a
pseudo-rational function H(λ):

H(λ) =

m
∑

k=0

bkλ
k

n
∑

k=0

akλk

. (26)

Based on the concept of the pseudo-rational function, a state-space
representation can be established in the form:

D
γ x(t) = Ax(t) +Bu(t) (27)

y(t) = Cx(t) +Du(t).



Example: From a FO transfer function to
the FO state-space form
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Suppose that we are given a fractional-order transfer function

G(s) =
s0.25 + 2.5

3s1.75 + 2s0.5 + 1
.

We find, that the commensurate order for this system is γ = 0.25. Then we use
H(s) = C(sI − A)−1B +D and arrive at the following state-space matrices

A =





















0 0 0 0 −0.66 0 −0.33
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0





















, B =





















1
0
0
0
0
0
0





















,

C =
[

0 0 0 0 0 0.33 0.83
]

, D = 0.



Example: Fractional system composition
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Let us assume that a fractional system is given by a block diagram

Here

G1(s) =
1

s0.5 + 1
, G2(s) =

s0.3 + 1

s2.5 + s+ 1
,

G3(s) =
2

s0.1 + 1
, G4(s) =

1

15s+ 1
.

Compute the transfer function resulting from the interconnection above.



Example: Fractional system composition
(solution)
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The fractional-order systems we consider are linear. Therefore, the
usual operations for computing system interconnections hold. In
this case the complete system is given by

−30s3.5 − 2s2.5 − 30s2 + 15s1.4 + 15s1.3

G(s) =
+15s1.1 − 17s+ s0.4 + s0.3 + s0.1 − 1

15s4.1 + 15s4 + 15s3.6 + 15s3.5 + s3.1 + s3 + 16s2.6

+14s2.5 + 15s2.1 + 15s2 + 16s1.6 + 16s1.5

+16s1.1 + 14s+ s0.6 + s0.5 + s0.4 + s0.3 + 2s0.1.

It can be seen from this example that from relatively simple initial
systems a fairly complicated fractional-order transfer function was
obtained. In this case we find, that the commensurate order of the
system is γ = 0.1.



Stability
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Theorem 1. (Matignon’s stability theorem) The fractional
transfer function G(s) = Z(s)/P (s) is stable if and only if the
following condition is satisfied in σ-plane:

∣

∣arg(σ)
∣

∣ > q
π

2
, ∀σ ∈ C, P (σ) = 0, (28)

where σ := sq. When σ = 0 is a single root of P (s), the system
cannot be stable. For q = 1, this is the classical theorem of pole
location in the complex plane: no pole is in the closed right plane
of the first Riemann sheet.

Algorithm summary: Find the commensurate order q of P (s), find
a1, a2, . . . an in (25) and solve for σ the equation

∑n
k=0 akσ

k = 0.
If all obtained roots satisfy the condition (28), the system is stable.



Stability regions

Aleksei Tepljakov 29 / 101



Exercise: Stability
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Determine the commensurate order γ of the fractional-order system given
below. Then, write out and solve the characteristic equation P (λ) = 0. Hint:
λ = sγ .

G(s) =
s+ 1

s− 2s0.5 + 5
.

Solution: The commensurate order is γ = 0.5, so we have λ = s0.5. Therefore,
the characteristic equation is

P (λ) = λ2 − 2λ+ 5.

Solving P (λ) = 0 yeilds complex roots λ1,2 = 1± j2. Notice, that in case of a
classical integer-order system this result would immediately imply instability.
However, in case of this system we have

| arg(1± j2)| ≈ 1.1071 > 0.7854 ≈ 0.5π

2
,

hence the system under analysis is stable.



Example: Stability evaluation of a relatively
complex system
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The transfer function is

G(s) =
−2s0.63 + 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5

and the commensurate order q = 0.01. It is found to be stable.



Time-domain analysis
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Consider a revised Grünwald-Letnikov definition rewritten as

aD
α
t f(t) = lim

h→0

1

hα

[ t−a
h ]

∑

j=0

w
(α)
j f(t− jh), (29)

where h is the computation step-size and w
(α)
j = (−1)j

(

α
j

)

can be
evaluated recursively from

w
(α)
0 = 1, w

(α)
j =

(

1− α+ 1

j

)

w
(α)
j−1, j = 1, 2, · · · . (30)

Further manipulations provide an algorithm for fixed-step numerical
time-domain evaluation of fractional-order transfer functions.
Please see [3] for details.



Frequency-domain analysis
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Frequency-domain response may be obtained by substituting
s = jω in (24). The complex response for a frequency ω ∈ (0; ∞)
can then be computed as follows:

G(ω) =
bm(jω)βm + bm−1(jω)

βm−1 + · · ·+ b0(jω)
β0

an(jω)αn + an−1(jω)αn−1 + · · ·+ a0(jω)α0
, (31)

where j is the imaginary unit.

It should be noted, that frequency-domain analysis is a very
important tool where fractional-order modeling and control design
are concerned.



Approximation of fractional operators
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The Oustaloup recursive filter gives a very good approximation of
fractional operators in a specified frequency range and is widely
used in fractional calculus. For a frequency range (ωb, ωh) and of
order N the filter for an operator sγ , 0 < γ < 1, is given by

sγ ≈ K
N
∏

k=−N

s+ ω′
k

s+ ωk
, K = ωγ

h, ωr =
ωh

ωb
, (32)

ω′
k = ωb(ωr)

k+N+1
2 (1−γ)

2N+1 , ωk = ωb(ωr)
k+N+1

2 (1+γ)

2N+1 .

The resulting model order is 2N + 1.

A modified Oustaloup filter has been proposed in literature [3].



Approximation of fractional-order models
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A general method for approximating a fractional-order model by an
integer-order one may be proposed. Recall the property in (14):

• The fractional-order derivative commutes with integer-order
derivative

dn

dtn
(

aD
α
t f(t)

)

= aD
α
t

(

dnf(t)

dtn

)

= aD
α+n
t f(t).

Thus, for fractional orders α ≥ 1 it holds

sα = snsγ , (33)

where n = α− γ denotes the integer part of α and sγ is obtained
by the Oustaloup approximation in (32).



Example: Oustaloup filter approximation
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The fractional-order transfer function is

G(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
,

and approximation parameters ω = [10−4; 104], N = 5.
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Discrete-time approximation: The zero-pole
matching equivalents method
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Continuous zeros and poles, obtained using the Oustaloup recursive
filter, are directly mapped to their discrete-time counterparts by
means of the relation

z = esTs , (34)

where Ts is the desired sampling interval. The gain of the resulting
discrete-time system H(z) must be corrected by a proper factor.

For the synthesis of continuous zeros and poles using the Oustaloup
method with the intent to obtain a discrete-time approximation the
transitional frequency ωh may be chosen such that

ωh 6
2

Ts
. (35)



Fractional-order integrator: Implementation
considerations
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We now address the issue of implementing the fractional-order integrator
component. A continuous-time integrator of order λ has to be
implemented as

GI(s) =
1

sλ
=

s1−λ

s

to ensure a nice control effect at lower frequencies. Its discrete-time
equivalent is given by

HI(z
−1) = H1−λ(z−1) ·HI(z

−1), (36)

where H1−λ(z) is computed using the method presented above, and

HI(z
−1) =

Ts

(1− z−1)
(37)

is a simple discrete-time integrator.



Time-domain identification: Output error
minimization
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Given the transfer function model in (24)

G(s) =
bmsβm + bm−1s

βm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0

we search for a parameter set θ = [ ap αp bz βz ], such that

ap = [ an an−1 · · · a0 ], αp = [ αn αn−1 · · · α0 ],

bz = [ bm bm−1 · · · b0 ], βz = [ βn βn−1 · · · β0 ],

by employing numerical optimization with an objective function
given by an output error norm

∥

∥e (t)
∥

∥

2

2
, where e(t) = y(t)− ỹ(t) is

obtained by taking the difference of the original model output y(t)
and simulated model output ỹ(t).



Time-domain identification: Process models
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Consider the following generalizations of conventional process models used in
industrial control design.

(FO)FOPDT G(s) = K
1+Ts

e−Ls G(s) = K
1+Tsα

e−Ls

(FO)IPDT G(s) = K
s
e−Ls G(s) = K

sα
e−Ls

(FO)FOIPDT G(s) = K
s(1+Ts)

e−Ls G(s) = K
s(1+Tsα)

e−Ls

Therefore, due to additional parameters K (gain) and L (delay) we may
update the identified parameter set discussed previously to

θ = [ K L ap αp bz βz ].



Residual Analysis
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Denote by yr the experimental plant output, and by ym the
identified model output. We consider the SISO case, so both yr
and ym should be vectors of size N × 1. In the following, we
address the problem of statistical analysis of modeling residuals.
Residuals are given by a vector containing the model output error

ε = yr − ym. (38)

The percentage fit may be expressed as

Fit =

(

1− ‖ε‖
‖yr − ȳr‖

)

· 100%, (39)

where ‖·‖ is the Euclidean norm, and ȳr is the mean value of yr.



Residual Analysis: Basic Statistical Data
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• Maximum absolute error

εmax = max
k

|ε(k)|, (40)

shows the maximum deviation from the expected behavior of the
model over the examined time interval; however, it may be misleading
in case of disturbances or strong noise;

• The mean squared error

εMSE =
1

N

N
∑

k=1

ε2k =
‖ε‖22
N

(41)

may serve as a general measure of model quality. The lower it is, the
more likely the model represents an adequate description of the
studied process.



Residual Analysis: Autocorrelation of
Residuals
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Additional useful information is given by an estimate for autocorrelation of residuals
for lag τ = 1, 2, . . . , τmax < N , which may be computed by means of

Rε(τ) =
1

(N − τ)

N−τ
∑

k=1

ε(k)ε(k + τ). (42)

The vector rε =
[

Rε(1) Rε(2) · · · Rε(τmax)
]

is constructed and is
normalized such that rε,norm = rε/Rε(1). Assuming normal distribution of residuals
the confidence band η̂ is then approximated for a confidence percentage
pconf ∈ (0, 1] around zero mean as an interval

η̂ =

[

(

0− Φ−1(cp)
)

/
√
N,

(

0 + Φ−1(cp)
)

/
√
N

]

, (43)

where cp = 1− 0.5(1− pconf ) and Φ−1(x) =
√
2 erf−1(2x− 1) is the quantile

function. If the residual samples represent uncorrelated white noise, then ideally:

rε,norm
i ∈ η̂ ∀i = 1, 2, . . . , τmax. (44)



Time domain identification: Different
optimization algorithms: Example
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Identification data is collected from a system

Ψ = ΨG +N, (45)

where ΨG is given by a continuous-time fractional-order transfer
function of the form

ΨG(s) =
1.5

0.11s1.93 + 0.79s0.31 + 1
, (46)

and the noise term has an amplitude of N = ±0.05. A
pseudo-random binary sequence is used as the excitation signal for
obtaining the transient response with a sample time of 0.01s.

In this example, the initial model structure is chosen such that its
pseudo-order is n = 2 and commensurate order γ = 1.



Time domain identification: Excitation
signal
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Time domain identification:
Trust-Region-Reflective identification

Aleksei Tepljakov 46 / 101

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Time [s]

O
ut

pu
t e

rr
or

Mean squared error: 0.051619; Max abs error: 0.87922

5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

Lags [Samples]

Autocorrelation of residuals (with P=0.95 confidence)



Time domain identification:
Levenberg-Marquardt algorithm
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Part III: Factional-order PID Controllers
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Fractional-order Control: PIλDµ controller

Aleksei Tepljakov 49 / 101

The control law of the PIλDµ controller can be expressed as follows:

u(t) = Kpe(t) +KiD
−λe(t) +KdD

µe(t), (47)

where e(t) = ysp(t)− y(t) is the error signal. After applying the
Laplace transform to (47) assuming zero initial conditions, the
following equation is obtained:

C(s) = Kp +
Ki

sλ
+Kds

µ (48)

Obviously, when taking λ = µ = 1 the result is the classical
integer-order PID controller.



Fractional-order Control: PIλDµ control loop
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Basics of fractional control: Fractional
control actions
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Let a basic fractional control action be defined as C(s) = K · sγ .
The control actions in the time domain for γ ∈ [−1, 1] with K = 1
under different input signals are given below.
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PID controller vs. PI0.5D0.5 controller:
frequency-domain characteristics

Aleksei Tepljakov 52 / 101

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−90

−45

0

45

90

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (rad/sec)

0

20

40

60

80

100

M
ag

ni
tu

de
 (

dB
)

 

 

Classical PID

Fractional PID

Classical PID

Fractional PID



Fractional-order Control: PIλDµ controller
tuning methods (F-MIGO)
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We would like to establish tuning methods for the FOPID controller similar to
conventional ones (e.g. Ziegler-Nichols tuning formulae). Several methods have been
proposed in literature so far. Consider the F-MIGO method suitable for tuning PIλ

controllers [3]. Suppose we are given a FOPDT process model

G(s) =
K

Ts+ 1
e−Ls, τ =

L

L+ T
, (49)

where τ is the relative dead-time of the system.Then

λ =























1.1, if τ > 0.6

1.0, if 0.4 6 τ < 0.6

0.9, if 0.1 6 τ < 0.4

0.7, if τ < 0.1.

and

Kp =
1

K

(

0.2978

τ + 0.000307

)

, Ki =
Kp(τ2 − 3.402τ + 2.405)

0.8578T
.



Optimization based PIλDµ tuning
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Optimization provides general means of tuning a fractional-order
PID controller given a cost function and suitable optimization
constraints. There are several aspects to the problem of designing
a proper controller using constrained optimization:

• The type of plant to be controlled (integer or noninteger order,
nonlinear);

• Optimization criterion (cost function);

• Fractional controller design specifications;

• Specific parameters to optimize in the set {Kp,Ki,Kd, λ, µ};
• Selection of initial controller parameters.



Optimization based PIλDµ tuning: Cost
function
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In case of a linear model we use time-domain simulation of a
typical negative unity feedback loop

Gcs(s) =
C(s)G(s)

1 + C(s)G(s)
. (50)

For the cost function we consider performance indicies:

• integral square error ISE =
∫ τ
0 e2(t)dt,

• integral absolute error IAE =
∫ τ
0

∣

∣e(t)
∣

∣dt,

• integral time-square error ITSE =
∫ τ
0 te2(t)dt,

• integral time-absolute error ITAE =
∫ τ
0 t

∣

∣e(t)
∣

∣dt.



Optimization based PIλDµ tuning:
Constraints
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The design specifications include:

• Gain margin Gm and phase margin ϕm specifications;

• Complementary sensitivity function T (jω) constraint, providing
A dB of noise attenuation for frequencies ω > ωt rad/s;

• Sensitivity function S(jω) constraint for output disturbance
rejection, providing a sensitivity function of B dB for
frequencies ω < ωs rad/s;

• Robustness to plant gain variations: a flat phase of the system
is desired within a region of the system critical frequency ωcg;

• For practical reasons, a constraint on the control effort u(t)
may also be set.



Gain and phase margin specifications
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(See http://a-lab.ee/edu/ajs/freq/ for details.)

http://a-lab.ee/edu/ajs/freq/


The FOPID Controller Retuning Method
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Consider the original integer-order PID controller of the form

CPID(s) = KP +KIs
−1 +KDs. (51)

Let CR(s) be a controller of the form

CR(s) =
K2s

β +K1s
α −KDs2 + (K0 −KP )s−KI

KDs2 +KP s+KI
, (52)

where the orders α and β are such, that −1 < α < 1 and 1 < β < 2. The
PIλDµ controller resulting from a classical PID controller will have the
following coefficients

K⋆
P = K0, K⋆

I = K1, K⋆
D = K2, (53)

and the orders will be
λ = 1− α, µ = β − 1. (54)



The FOPID Controller Retuning Method:
Illustration
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PID Plant
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r

e
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Original PID control loop

It can be shown, that this structure may be replaced by a negative
unity feedback where the controller is

C(s) = (CR(s) + 1) · CPID(s). (55)



Discrete-time approximation of
fractional-order controllers
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After acquiring a set of discrete-time zeros and poles by means of
(34), the fractional-order controller may be implemented in form of
a IIR filter represented by a discrete-time transfer function H(z−1).
In general, one has two choices:

1. Implement each fractional-order component approximation of
the controller in (48) separately as Hλ(z−1) and Hµ(z−1);
this method offers greater flexibility, since the components may
be reused in the digital signal processing chain, but requires
more memory and is generally more computationally expensive;

2. Compute a single LTI object approximating the whole
controller; this method is suitable when there is a need for a
static description of a fractional-order controller.



Digital controller implementation: IIR filters
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In this particular work we choose the second option, that is we seek
a description of the controller in the form

H(z−1) = K
b0 + b1z

−1 + b2z
−2 + · · ·+ bmz−m

a0 + a1z−1 + a2z−2 + · · ·+ anz−n
. (56)

For practical reasons, the equivalent IIR filter should be comprised
of second-order sections. This allows to improve computational
stability when the target signal digital processing hardware has
limited DSP capabilities. Thus, the discrete-time controller must
be transformed to yield

H(z−1) = Kc

N
∏

k=1

b0k + b1kz
−1 + b2kz

−2

1 + a1kz−1 + a2kz−2
. (57)



Biquad IIR filter: Transposed form II
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FOPID Controller Hardware Prototype
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Part IV: CACSD Tools: FOMCON
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FOMCON project: Fractional-order
Modeling and Control
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• Official website: http://fomcon.net/

• Toolbox for MATLAB available, development via GitHub:
https://github.com/AlekseiTepljakov/fomcon-matlab

• Recently: Added initial support for studying FO MIMO systems.

http://fomcon.net/
https://github.com/AlekseiTepljakov/fomcon-matlab


FOMCON toolbox: Structure
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FOMCON toolbox: FOTF Viewer
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FOMCON toolbox: Time-domain
identification
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FOMCON toolbox: Optimization based
PIλDµ tuning
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Part V: Applications of Fractional-order Con-
trol
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Case study (1): Fractional-order control of
the coupled tank system
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The system is modeled in continuous time in
the following way:

ẋ1 =
1

A
u1 − d12 − w1c1

√
x1, (58)

ẋ2 =
1

A
u2 + d12 − w2c2

√
x2,

where x1 and x2 are levels of fluid, A is the
cross section of both tanks; c1, c2, and c12 are
flow coefficients, u1 and u2 are pump powers;
valves are denoted by wi : wi ∈ {0, 1} and

d12 = w12 · c12·sign(x1 − x2)
√

|x1 − x2|.



Case study (1): Fractional-order control of
the coupled tank system (continued)
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Our task is to control the level in the first tank. We identify the
real plant from a step experiment with w1 = w12 = 1, w2 = 0 in
(58). The resulting fractional-order model is described by a transfer
function

G2 =
2.442

18.0674s0.9455 + 1
e−0.1s. (59)

We notice, that this model does not tend to exhibit integer-order
dynamics. Due to the value of the delay term the basic tuning
formulae for integer-order PID tuning do not provide feasible
results. It is possible to select some starting point manually and
run optimization several times. However, it is important to choose
the correct frequency domain specifications to ensure control
system stability.



Case study (1): Experiments with controller
implementation: Hardware platform
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Case study (1): Fractional-order control of
the coupled tank system (continued)
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In our case the goal is to minimize the impact of disturbance, so
constraints on the sensitivity functions could be imposed. Our
choice is such that

∣

∣T (jω)
∣

∣ ≤ −20 dB, ∀ω ≥ 10 rad/s and
∣

∣S(jω)
∣

∣ ≤ −20 dB, ∀ω ≤ 0.1 rad/s. The gain and phase margins
are set to Gm = 10dB and ϕ = 60◦, respectively. Additionally, in
order to limit the overshoot, the upper bound of control signal
saturation was lowered from 100% to 60%. Using the IAE
performance metric we finally arrive at the following PIλDµ

controller parameters by optimizing the response of the nonlinear
system in Simulink:

Kp = 6.9514, Ki = 0.13522, Kd = −0.99874,

λ = 0.93187, µ = 0.29915. (60)



Case study (1): Fractional-order control of
the coupled tank system (continued)
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Case study (2): Control of a Multi-Tank
System
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Inflow from pump

Tank 1 with constant

cross-section

Manual and

automatic valves

of both tanks

Tank 2 with variable

cross-section

This system can be described by the following
differential equations:

ẋ1 =
1

η1(x1)

(

up(v)− C1x
α1

1 − ζ1(v1)x
αv1

1

)

,

ẋ2 =
1

η2(x2)

(

q + r − C2x
α2

2 − ζ2(v2)x
αv2

2

)

,

where x1 and x2 are levels in the upper tank and
middle tank, respectively, η1(x1) = A = aw and
η2(x2) = cw+ x2bw/x2max are cross-sectional areas of
the upper and middle tank, respectively, up(v) is the
pump capacity, such that depends on the normalized
input v(t) ∈ [0, 1]; ζ1(v1) and ζ2(v2) are variable flow
coefficients of the automatic valves controlled by
normalized inputs v1(t), v2(t) ∈ [0, 1], q = C1x

α1

1 and
r = ζ1(v1)x

αv1

1 .



Case study (2): Statement of the control
problem
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• The task is to design a controller for the upper tank such that would
keep the level of fluid within reasonable bounds at the desired set
point in the presense of disturbances caused by the controlled output
valve.

• It is required to design a controller for the middle tank, such that
would keep the level of fluid at the desired set point using controlled
valves of the upper tank and also its own valve.

• The tanks are, in fact, coupled, so only a limited range of fluid level
values is achievable in the middle tank and it is related to the level in
the upper tank.

• The outflow of liquid from the upper tank through the automatic
valve forms part of the control for the middle tank and is considered
a disturbance from the perspective of level control in the upper tank.



Case study (2): The real-life Multi-Tank
system
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Case study (2): Linear approximations
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First, linear approximations are obtained from the nonlinear model by
means of time-domain identification at system working points
(0.7029, 0.1) and (0.7879, 0.2). The following models are found:

G1(s) =
0.14464

18.728s0.91746 + 1

and

G2(s) =
0.25881

27.859s0.9115 + 1
.

Next, controllers are designed for level control in the upper tank using
the FOPID optimization tool of FOMCON toolbox. For this a nonlinear
model of the system is used for simulations in the time domain, the set
value corresponds to the particular operating point. Linear
approximations, corresponding to the working points, are used to
constrain the optimization by means of frequency-domain specifications.



Case study (2): Tuning the FOPID
controller for the upper tank
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We use a two-point GOS scheme, therefore we have two
controllers. The specifications are as follows:

• In case of the first controller, a phase margin is set to
ϕm > 60◦, sensitivity and complementary sensitivity function
constraints are set such that ωt = 0.02 and ωs = 0.1 with
A = B = −20 dB. Robustness to gain variations specification is
also used with the critical frequency ωc = 0.1.

• For the second controller, the phase margin specification is
changed to ϕm = 85◦ and the bandwidth limitation specified by
ωc is removed.

Due to the flexibility of the tuning tool, it is possible to retune the
controllers by considering the composite control law during the
controller optimization process.



Case study (2): Composite control law and
stability test
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As a result, two FOPID controllers are obtained:

C1(s) = 6.1467 +
1.0712

s0.9528
+ 0.8497s0.8936

and

C2(s) = 5.1524 +
0.3227

s1.0554
+ 2.4827s0.010722.

The composite control law

C(s) =

(

1− γ(x1)
)

C1(s) + γ(x1)C2(s)

2

is then verified with both models G1(s) and G2(s) using the stability test
with step size of ∆γ = 0.01 and minimum commensurate order
qmin = 0.01. The result of the test is that the closed-loop systems are
stable in case of both fractional models.



Case study (2): Tuning the FOPID
controller for the middle tank
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Once the gain and order scheduled composite controller is designed, it is
plugged into the simulated control system, and a FOPID controller is designed
for the second tank using the same optimization tool. In addition, we consider
the following:

• Frequency-domain specifications are not applicable, since we do not have a
linear model of this process.

• The application of the Dµ component is not very desirable in this case due
to higher levels of noise.

Therefore we design a FOPI controller based only on optimization of the
transient response of the control system in the time domain. The following
controller is obtained:

C3(s) = 5.0000 +
0.06081

s0.1029

which is essentially a proportional controller with a weak fractional-order
integrator.



Case study (2): Control system performance
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Case study (2): GOS FOPID control of level
in the first tank via visual feedback
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Case study (2): GOS FOPID control of level
in the first tank via visual feedback: Results
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Case study (3): Retuning Control of Maglev
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We use the following model of the MLS:

ẋ1 = x2,

ẋ2 = −c(x1)

m

x23
x21

+ g, (61)

ẋ3 =
fip2
fip1

i(u)− x3

e−x1/fip2
,

where x1 is the position of the sphere, x2 is
the velocity of the sphere, and x3 is the coil
current, fip1 and fip2 are constants, c(x1)
is a 4th order polynomial and i(u) is a 2nd
order polynomial.



Case study (3): Experimental Setup
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A real-life MLS is used in this experiment. The MATLAB/Simulink
environment acts as an interface between the two devices.



Case study (3): Experimental Results
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The following FOPID controller was implemented in the retuning
configuration:

C∗
1 (s) = −45.839− 18.504s−1.06 − 3.0559s0.94,

The parameters of the retuning controller in (52) were computed,
and an implementation of the form (57) was obtained using the
Oustaloup method with N = 4 and ω = [0.001, 2/Ts], where
Ts = 0.001s is the desired sample rate.



Case study (3): Experimental Results
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Video: https://youtu.be/NXbqjK6oIcw

https://youtu.be/NXbqjK6oIcw


Case study (4): Network approximation of a
FO lead compensator
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Recall the example, where our goal was to obtain an analog
implementation a fractional controller for a model of a position
servo

G(s) =
1.4

s(0.7s+ 1)
e−0.05s.

We now provide the results of approximating the controller

C(s) =

(

2.0161s+ 1

0.0015s+ 1

)0.7020

by an electrical network by using a deterministic method,
implemented as part of the unified network generation framework
in FOMCON, for obtaining the parameters of the network.



Case study (4): Electrical network
approximations
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In order to implement it, the following steps are carried out:

• We choose R1 = 200kΩ and C1 = 1µF due to the time
constant τ .

• The basic structure is the Foster II form RC network and the
implementation is done by means of the mentioned algorithm.

• To obtain the differentiator, we use the property
Zd(s) = 1/Zi(s), where Zd(s) and Zi(s) correspond to
impedances of a differentiator and an integrator, respectively.

• This is done by setting the impedances in the active filter
circuit such that Z1(s) = Zi(s) and Z2(s) = Rk, where Rk

serves as a gain correction resistor.



Case study (4): Electrical network
approximations (continued)
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b = 2.0161; wz = 1/b;
alpha = 0.702;
Gc = fotf(’s’)^alpha / wz^alpha;

params = struct; params.R1 = 200e3;
params.C1 = 1e-6; params.N = 4;
params.varphi = 0.01;

imp2 = frac_rcl(1/Gc, ...
’frac_struct_rc_foster2’, ...
’frac_imp_rc_foster2_abgen’, ...
logspace(-2,3,1000), ...
params);



Case study (4): Electrical network
approximations (continued)
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The controller is obtained from the object using

C = 1/zpk(imp2);

Now we set the resistor values to the preferred series with 5% tolerance,
and the capacitor values are substituted for closest components out of
the 10%-series:

imp2 = imp2.prefnum(’5%’,’10%’,[],’5%’);

Finally, the bill of materials can be generated using engnum():

[vals, str] = engnum(imp2.R);

The variable str will contain the following:

’360 k’ ’200 k’ ’75 k’ ’27 k’ ’9.1 k’

The gain setting resistor Rk has the preferred value of 390kΩ.



Case study (4): Electrical network
approximations (continued)
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Case study (4): Electrical network
approximations (continued)
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Bode Diagram
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Case study (4): Frequency response around
ωcg = 2.2 rad/s
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Bode Diagram

Frequency  (rad/s)10
0

10
1

0

30

60

90

P
ha

se
 (

de
g)

0

2

4

6

8

10

12

14

16

18

20

M
ag

ni
tu

de
 (

dB
)

 

 

Fractional lead compensator
Electrical network approximation (real)



Case study (4): Electrical network
approximations: Results

Aleksei Tepljakov 100 / 101

0 20 40 60 80 100 120
−10

−5

0

5

10

15

A
m

pl
itu

de

 

 

0 20 40 60 80 100 120
−5

0

5

Time [s]

C
on

tr
ol

 la
w

 u
(t

)

 

 

Response with simulated model and real controller
Simulated response
Set point

Analog controller
Simulated controller



References

Aleksei Tepljakov 101 / 101

[1] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and
Fractional Differential Equations, Wiley, New York, 1993.

[2] I. Podlubny, Fractional Differential Equations, Academic Press, San
Diego, CA, 1999.

[3] C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu,
Fractional-order Systems and Controls Fundamentals and
Applications, Springer-Verlag, London, 2010.

[4] R. Hilfer, Applications of Fractional Calculus in Physics, World
Scientific, Singapore, 2000.

[5] I. Podlubny, Geometric and Physical Interpretation of Fractional
Integration and Fractional Differentiation, Fractional Calculus and
Applied Analysis, vol. 5, no. 4, pp. 367-386, 2002.


	Lecture overview
	Part I: Mathematical Basis of Fractional-order Calculus
	Introduction: Historical facts
	Fractional derivative of a power function: An approach based on intuition
	The Gamma function
	Example: fractional-order derivative of a function f(x)=x
	Fractional derivative of a trigonometric function: An approach based on intuition
	Half derivative of a sine function
	Repeated differentiation: Backward difference equation
	Repeated differentiation: Backward difference equation based generalization
	Fractional-order derivative: Important alternative definitions
	The generalized operator
	Properties of fractional-order differentiation
	Properties of fractional-order differentiation (continued)
	On the meaning of the fractional-order derivative
	Exercise: Integration

	Part II: Factional-order Modeling of Dynamic Systems
	Laplace transform
	Fractional-order derivative definitions: Laplace transform
	Fractional-order models
	Linear, time invariant fractional-order system classification
	Fractional-order transfer functions
	Fractional-order transfer functions and state-space representation
	Example: From a FO transfer function to the FO state-space form
	Example: Fractional system composition
	Example: Fractional system composition (solution)
	Stability
	Stability regions
	Exercise: Stability
	Example: Stability evaluation of a relatively complex system
	Time-domain analysis
	Frequency-domain analysis
	Approximation of fractional operators
	Approximation of fractional-order models
	Example: Oustaloup filter approximation
	Discrete-time approximation: The zero-pole matching equivalents method
	Fractional-order integrator: Implementation considerations
	Time-domain identification: Output error minimization
	Time-domain identification: Process models
	Residual Analysis
	Residual Analysis: Basic Statistical Data
	Residual Analysis: Autocorrelation of Residuals
	Time domain identification: Different optimization algorithms: Example
	Time domain identification: Excitation signal
	Time domain identification: Trust-Region-Reflective identification
	Time domain identification: Levenberg-Marquardt algorithm

	Part III: Factional-order PID Controllers
	Fractional-order Control: PID controller
	Fractional-order Control: PID control loop
	Basics of fractional control: Fractional control actions
	PID controller vs. PI0.5D0.5 controller: frequency-domain characteristics
	Fractional-order Control: PID controller tuning methods (F-MIGO)
	Optimization based PID tuning
	Optimization based PID tuning: Cost function
	Optimization based PID tuning: Constraints
	Gain and phase margin specifications
	The FOPID Controller Retuning Method
	The FOPID Controller Retuning Method: Illustration
	Discrete-time approximation of fractional-order controllers
	Digital controller implementation: IIR filters
	Biquad IIR filter: Transposed form II
	FOPID Controller Hardware Prototype

	Part IV: CACSD Tools: FOMCON
	FOMCON project: Fractional-order Modeling and Control
	FOMCON toolbox: Structure
	FOMCON toolbox: FOTF Viewer
	FOMCON toolbox: Time-domain identification
	FOMCON toolbox: Optimization based PID tuning

	Part V: Applications of Fractional-order Control
	Case study (1): Fractional-order control of the coupled tank system
	Case study (1): Fractional-order control of the coupled tank system (continued)
	Case study (1): Experiments with controller implementation: Hardware platform
	Case study (1): Fractional-order control of the coupled tank system (continued)
	Case study (1): Fractional-order control of the coupled tank system (continued)
	Case study (2): Control of a Multi-Tank System
	Case study (2): Statement of the control problem
	Case study (2): The real-life Multi-Tank system
	Case study (2): Linear approximations
	Case study (2): Tuning the FOPID controller for the upper tank
	Case study (2): Composite control law and stability test
	Case study (2): Tuning the FOPID controller for the middle tank
	Case study (2): Control system performance
	Case study (2): GOS FOPID control of level in the first tank via visual feedback
	Case study (2): GOS FOPID control of level in the first tank via visual feedback: Results
	Case study (3): Retuning Control of Maglev
	Case study (3): Experimental Setup
	Case study (3): Experimental Results
	Case study (3): Experimental Results
	Case study (4): Network approximation of a FO lead compensator
	Case study (4): Electrical network approximations
	Case study (4): Electrical network approximations (continued)
	Case study (4): Electrical network approximations (continued)
	Case study (4): Electrical network approximations (continued)
	Case study (4): Electrical network approximations (continued)
	Case study (4): Electrical network approximations (continued)
	Case study (4): Electrical network approximations (continued)
	Case study (4): Frequency response around cg=2.2 rad/s
	Case study (4): Frequency response around cg=2.2 rad/s
	Case study (4): Electrical network approximations: Results
	References


