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• Mathematical basis of fractional-order calculus;

• Fractional-order calculus in modeling and control:

◦ Analysis of fractional models;

◦ PIλDµ controllers and their design;

◦ Implementations of fractional-order systems and controllers.

• Overview of CACSD tools and examples of practical
applications:

◦ Introduction to FOMCON toolbox for MATLAB;

◦ Control design and implementation examples.
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• The concept of the differentiation operator D = d/dx is a
well-known fundamental tool of modern calculus. For a suitable
function f the n-th derivative is well defined as

D
nf(x) = d nf(x)/dxn, (1)

where n is a positive integer.
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• The concept of the differentiation operator D = d/dx is a
well-known fundamental tool of modern calculus. For a suitable
function f the n-th derivative is well defined as

D
nf(x) = d nf(x)/dxn, (1)

where n is a positive integer.

• What happens if we extend this concept to a situation, when
the order of differentiation is arbitrary, for example, fractional?

• That was the very same question L’Hôpital addressed to Leibniz
in a letter in 1695. Since then the concept of fractional calculus
has drawn the attention of many famous mathematicians,
including Euler, Laplace, Fourier, Liouville, Riemann, Abel.
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For the power function f(x) = xk the fractional derivative can be
shown to be

dαf(x)

dxα
=

Γ(k + 1)

Γ(k − α+ 1)
xk−α. (2)
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For the power function f(x) = xk the fractional derivative can be
shown to be

dαf(x)

dxα
=

Γ(k + 1)

Γ(k − α+ 1)
xk−α. (2)

The function Γ(·) above is the Gamma function—the
generalization of the factorial function:

Γ(x) =

∫

∞

0
tx−1e−tdt, x > 0. (3)

Example:
d1/2(x2)

dx1/2
=

Γ(3)

Γ(5/2)
x

3/2 =
8x3/2

3
√
π
.
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Example: fractional-order derivative of a
function f(x) = x
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Fractional derivative of a trigonometric
function: An approach based on intuition
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We observe, what happens when we repeatedly differentiate the
function f(x) = sinx:

d

dx
sinx = cosx,

d2

dx2
sinx = − sinx,

d3

dx3
sinx = − cosx, . . .
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We observe, what happens when we repeatedly differentiate the
function f(x) = sinx:

d

dx
sinx = cosx,

d2

dx2
sinx = − sinx,

d3

dx3
sinx = − cosx, . . .

The pattern can be deduced: for the nth derivative, the function
sinx is shifted by nπ/2 radians. This can be observed from
studying the graph of the function. Thus, if we replace n by
α ∈ R

+, we have

dα

dxα
sinx = sin

(

x+
απ

2

)

. (4)

Obviously, a similar equation holds for the cosine function as well.
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difference equation
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Recall the backward difference definition of f ′(x) given by

f ′(x) = lim
h→0

f(x)− f(x− h)

h
. (5)



Repeated differentiation: Backward
difference equation

Aleksei Tepljakov 10 / 69

Recall the backward difference definition of f ′(x) given by

f ′(x) = lim
h→0

f(x)− f(x− h)

h
. (5)

It follows, that

f ′′(x) = lim
h→0

f ′(x)− f ′(x− h)

h
= lim

h→0

f(x)− 2f(x− h) + f(x− 2h)

h2
.



Repeated differentiation: Backward
difference equation

Aleksei Tepljakov 10 / 69

Recall the backward difference definition of f ′(x) given by

f ′(x) = lim
h→0

f(x)− f(x− h)

h
. (5)

It follows, that

f ′′(x) = lim
h→0

f ′(x)− f ′(x− h)

h
= lim

h→0

f(x)− 2f(x− h) + f(x− 2h)

h2
.

Furthermore,

f ′′′(x) = lim
h→0

f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)

h3
.



Repeated differentiation: Backward
difference equation

Aleksei Tepljakov 10 / 69

Recall the backward difference definition of f ′(x) given by

f ′(x) = lim
h→0

f(x)− f(x− h)

h
. (5)

It follows, that

f ′′(x) = lim
h→0

f ′(x)− f ′(x− h)

h
= lim

h→0

f(x)− 2f(x− h) + f(x− 2h)

h2
.

Furthermore,

f ′′′(x) = lim
h→0

f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)

h3
.

And in general

f (n)(x) = lim
h→0

1

hn

n
∑

k=0

(−1)k
(

n

k

)

f(x− kh). (6)
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Can we generalize this to the case n ∈ R+?
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Can we generalize this to the case n ∈ R+?

Of course! All we need to do is to consider the factorial formula for the
binomial coefficient and use the ever so kind Gamma function to lend a helping
hand in case we have α ∈ R

+:
(

n

k

)

=
n!

k!(n− k)!
→

(

α

k

)

=
Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
. (7)

We find that this approach is the very basis for Grünwald-Letnikov’s definition
of the fractional-order derivative.
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Can we generalize this to the case n ∈ R+?

Of course! All we need to do is to consider the factorial formula for the
binomial coefficient and use the ever so kind Gamma function to lend a helping
hand in case we have α ∈ R

+:
(

n

k

)

=
n!

k!(n− k)!
→

(

α

k

)

=
Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
. (7)

We find that this approach is the very basis for Grünwald-Letnikov’s definition
of the fractional-order derivative. In fact, here it is:

Definition 1. (Grünwald-Letnikov)

GL
D

αf(t)|t=nh = lim
h→0

1

hα

n
∑

k=0

(−1)k
(

α

k

)

f(nh− kh). (8)
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Definition 2. (Riemann-Liouville)

R
a D

α
t f(t) =

1

Γ(m− α)

(

d

dt

)m
[

∫ t

a

f(τ)

(t− τ)α−m+1
dτ

]

, (9)

where m− 1 < α < m, m ∈ N,α ∈ R
+.
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Definition 2. (Riemann-Liouville)

R
a D

α
t f(t) =

1

Γ(m− α)

(

d

dt

)m
[

∫ t

a

f(τ)

(t− τ)α−m+1
dτ

]

, (9)

where m− 1 < α < m, m ∈ N,α ∈ R
+.

Definition 3. (Caputo)

C
0 D

α
t f(t) =

1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α−m+1
dτ, (10)

where m− 1 < α < m, m ∈ N.



The generalized operator
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Fractional calculus is a generalization of integration and
differentiation to non-integer order operator aD

α
t , where a and t

denote the limits of the operation and α denotes the fractional
order such that

aD
α
t =















dα

dtα ℜ(α) > 0,

1 ℜ(α) = 0,
∫ t
a (dτ)

−α ℜ(α) < 0,

(11)

where generally it is assumed that α ∈ R, but it may also be a
complex number. We restrict our attention to the former case.



Properties of fractional-order differentiation
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Fractional-order differentiation has the following properties:

1. If α = n and n ∈ Z
+, then the operator 0D

α
t can be

understood as the usual operator dn/dtn.

2. Operator of order α = 0 is the identity operator:

0D
0
t f(t) = f(t).

3. Fractional-order differentiation is linear; if a, b are constants,
then

0D
α
t

[

af(t) + bg(t)
]

= a 0D
α
t f(t) + b 0D

α
t g(t). (12)

4. If f(t) is an analytic function, then the fractional-order
differentiation 0D

α
t f(t) is also analytic with respect to t.
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Properties of fractional-order differentiation
(continued)
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5. For the fractional-order operators with ℜ(α) > 0,ℜ(β) > 0,
and under reasonable constraints on the function f(t) it holds
the additive law of exponents:

0D
α
t

[

0D
β
t f(t)

]

= 0D
β
t

[

0D
α
t f(t)

]

= 0D
α+β
t f(t) (13)

6. The fractional-order derivative commutes with integer-order
derivative

dn

dtn
(

aD
α
t f(t)

)

= aD
α
t

(

dnf(t)

dtn

)

= aD
α+n
t f(t), (14)

and if t = a we have f (k)(a) = 0, (k = 0, 1, 2, ..., n− 1).



Properties of fractional-order differentiation
(continued)

Aleksei Tepljakov 15 / 69

5. For the fractional-order operators with ℜ(α) > 0,ℜ(β) > 0,
and under reasonable constraints on the function f(t) it holds
the additive law of exponents:

0D
α
t

[

0D
β
t f(t)

]

= 0D
β
t

[

0D
α
t f(t)

]

= 0D
α+β
t f(t) (13)

6. The fractional-order derivative commutes with integer-order
derivative

dn

dtn
(

aD
α
t f(t)

)

= aD
α
t

(

dnf(t)

dtn

)

= aD
α+n
t f(t), (14)

and if t = a we have f (k)(a) = 0, (k = 0, 1, 2, ..., n− 1).



On the meaning of the fractional-order
derivative
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Consider a hereditary operator F (ft(·), t) acting on a cause process ft(·) to
produce a time-shifted effect g(t) which depends on the history of the process
{ft(τ); τ < t}:

g(t) = F
[

ft(·); t
]

. (15)

The main idea: The fractional-order operator is non-local. Hereditary process
examples from physics: Brownian motion; Viscoelasticity.

Suggested relation to time scales [5]:



Exercise: Integration
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Compute a fractional-order derivative of order 1/2 for the function f(t) = t2

using the Caputo definition. Hint: Γ(1/2) =
√
π.

C
0 D

1/2
t t2 =

1

Γ(1− 1/2)

∫ t

0

(τ2)′

(t− τ)1/2−1+1
dτ = ?
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1/
√
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Compute a fractional-order derivative of order 1/2 for the function f(t) = t2

using the Caputo definition. Hint: Γ(1/2) =
√
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4/3u
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u+ C = 4/3(t− τ)
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√
t− τ + C.

The answer is

1√
π
·
(

4/3(t− τ)
3/2 − 4t

√
t− τ + C

)

∣

∣

∣

∣

t

0
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∣
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∣

∣

∣
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·
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−4/3t
3/2 + 4t

3/2
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= 8t
3/2

3
√
π
.
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Laplace transform
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A function F (s) of the complex variable s is called the Laplace
transform of the original function f(t) and defined as

F (s) = L
[

f(t)
]

=

∫

∞

0
e−stf(t)dt (16)

The original function f(t) can be recovered from the Laplace
transform F (s) by applying the inverse Laplace transform

f(t) = L
−1

[

F (s)
]

=
1

j2π

∫ c+j∞

c−j∞
estF (s)ds, (17)

where c is greater than the real part of all the poles of F (s).



Fractional-order derivative definitions:
Laplace transform

Aleksei Tepljakov 20 / 69

Definition 4. (Riemann-Liouville)

L

[

R
D

αf(t)
]

= sαF (s)−
m−1
∑

k=0

sk
[

D
α−k−1f(t)

]

t=0
. (18)

Definition 5. (Caputo)

L

[

C
D

αf(t)
]

= sαF (s)−
m−1
∑

k=0

sα−k−1f (k)(0). (19)

Definition 6. (Grünwald-Letnikov)

L

[

L
D

αf(t)
]

= sαF (s). (20)

For the first two definitions we have (m− 1 6 α < m).



Fractional-order models
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A linear, fractional-order continuous-time dynamic system can be
expressed by a fractional differential equation of the following form

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a0D
α0y(t) = (21)

bmD
βmu(t) + bm−1D

βm−1u(t) + · · ·+ b0D
β0u(t),

where ak, bk ∈ R. The system is said to be of commensurate-order
if in (21) all the orders of derivation are integer multiples of a base
order γ such that αk, βk = kγ, γ ∈ R

+. The system can then be
expressed as

n
∑

k=0

akD
kγy(t) =

m
∑

k=0

bkD
kγu(t). (22)



Linear, time invariant fractional-order
system classification
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If in (22) the order is γ = 1/q, q ∈ Z
+, the system will be of

rational order. The diagram with linear time-invariant (LTI) system
classification is given in the following diagram.



Fractional-order transfer functions
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Applying the Laplace transform to (21) with zero initial conditions
the input-output representation of the fractional-order system can
be obtained in the form of a transfer function:

G(s) =
Y (s)

U(s)
=

bmsβm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (23)

In the case of a system with commensurate order γ we have

G(s) =

m
∑

k=0

bk (s
γ)k

n
∑

k=0

ak (sγ)
k
. (24)



Fractional-order transfer functions and
state-space representation
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Taking λ = sγ the function (24) can be viewed as a
pseudo-rational function H(λ):

H(λ) =

m
∑

k=0

bkλ
k

n
∑

k=0

akλk

. (25)

Based on the concept of the pseudo-rational function, a state-space
representation can be established in the form:

D
γ x(t) = Ax(t) +Bu(t) (26)

y(t) = Cx(t) +Du(t).



Example: From a FO transfer function to
the FO state-space form
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Suppose that we are given a fractional-order transfer function

G(s) =
s0.25 + 2.5

3s1.75 + 2s0.5 + 1
.
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Suppose that we are given a fractional-order transfer function

G(s) =
s0.25 + 2.5

3s1.75 + 2s0.5 + 1
.

We find, that the commensurate order for this system is γ = 0.25. Then we use
H(s) = C(sI − A)−1B +D and arrive at the following state-space matrices

A =





















0 0 0 0 −0.66 0 −0.33
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0





















, B =





















1
0
0
0
0
0
0





















,

C =
[

0 0 0 0 0 0.33 0.83
]

, D = 0.



Example: Fractional system composition
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Let us assume that a fractional system is given by a block diagram

Here

G1(s) =
1

s0.5 + 1
, G2(s) =

s0.3 + 1

s2.5 + s+ 1
,

G3(s) =
2

s0.1 + 1
, G4(s) =

1

15s+ 1
.

Compute the transfer function resulting from the interconnection above.



Example: Fractional system composition
(solution)
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The fractional-order systems we consider are linear. Therefore, the
usual operations for computing system interconnections hold. In
this case the complete system is given by

−30s3.5 − 2s2.5 − 30s2 + 15s1.4 + 15s1.3

G(s) =
+15s1.1 − 17s+ s0.4 + s0.3 + s0.1 − 1

15s4.1 + 15s4 + 15s3.6 + 15s3.5 + s3.1 + s3 + 16s2.6

+14s2.5 + 15s2.1 + 15s2 + 16s1.6 + 16s1.5

+16s1.1 + 14s+ s0.6 + s0.5 + s0.4 + s0.3 + 2s0.1.

It can be seen from this example that from relatively simple initial
systems a fairly complicated fractional-order transfer function was
obtained. In this case we find, that the commensurate order of the
system is γ = 0.1.



Stability
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Theorem 1. (Matignon’s stability theorem) The fractional
transfer function G(s) = Z(s)/P (s) is stable if and only if the
following condition is satisfied in σ-plane:

∣

∣arg(σ)
∣

∣ > q
π

2
, ∀σ ∈ C, P (σ) = 0, (27)

where σ := sq. When σ = 0 is a single root of P (s), the system
cannot be stable. For q = 1, this is the classical theorem of pole
location in the complex plane: no pole is in the closed right plane
of the first Riemann sheet.
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Theorem 1. (Matignon’s stability theorem) The fractional
transfer function G(s) = Z(s)/P (s) is stable if and only if the
following condition is satisfied in σ-plane:

∣

∣arg(σ)
∣

∣ > q
π

2
, ∀σ ∈ C, P (σ) = 0, (27)

where σ := sq. When σ = 0 is a single root of P (s), the system
cannot be stable. For q = 1, this is the classical theorem of pole
location in the complex plane: no pole is in the closed right plane
of the first Riemann sheet.

Algorithm summary: Find the commensurate order q of P (s), find
a1, a2, . . . an in (24) and solve for σ the equation

∑n
k=0 akσ

k = 0.
If all obtained roots satisfy the condition (27), the system is stable.



Stability regions
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Exercise: Stability

Aleksei Tepljakov 30 / 69

Determine the commensurate order γ of the fractional-order system given
below. Then, write out and solve the characteristic equation P (λ) = 0. Hint:
λ = sγ .

G(s) =
s+ 1

s− 2s0.5 + 5
.
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Determine the commensurate order γ of the fractional-order system given
below. Then, write out and solve the characteristic equation P (λ) = 0. Hint:
λ = sγ .

G(s) =
s+ 1

s− 2s0.5 + 5
.

Solution: The commensurate order is γ = 0.5, so we have λ = s0.5. Therefore,
the characteristic equation is

P (λ) = λ2 − 2λ+ 5.
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Determine the commensurate order γ of the fractional-order system given
below. Then, write out and solve the characteristic equation P (λ) = 0. Hint:
λ = sγ .

G(s) =
s+ 1

s− 2s0.5 + 5
.

Solution: The commensurate order is γ = 0.5, so we have λ = s0.5. Therefore,
the characteristic equation is

P (λ) = λ2 − 2λ+ 5.

Solving P (λ) = 0 yeilds complex roots λ1,2 = 1± j2. Notice, that in case of a
classical integer-order system this result would immediately imply instability.
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Determine the commensurate order γ of the fractional-order system given
below. Then, write out and solve the characteristic equation P (λ) = 0. Hint:
λ = sγ .

G(s) =
s+ 1

s− 2s0.5 + 5
.

Solution: The commensurate order is γ = 0.5, so we have λ = s0.5. Therefore,
the characteristic equation is

P (λ) = λ2 − 2λ+ 5.

Solving P (λ) = 0 yeilds complex roots λ1,2 = 1± j2. Notice, that in case of a
classical integer-order system this result would immediately imply instability.
However, in case of this system we have

| arg(1± j2)| ≈ 1.1071 > 0.7854 ≈ 0.5π

2
,

hence the system under analysis is stable.



Example: Stability evaluation of a relatively
complex system
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The transfer function is

G(s) =
−2s0.63 + 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5

and the commensurate order q = 0.01. It is found to be stable.



Time-domain analysis
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Consider a revised Grünwald-Letnikov definition rewritten as

aD
α
t f(t) = lim

h→0

1

hα

[ t−a
h ]

∑

j=0

w
(α)
j f(t− jh), (28)

where h is the computation step-size and w
(α)
j = (−1)j

(

α
j

)

can be
evaluated recursively from

w
(α)
0 = 1, w

(α)
j =

(

1− α+ 1

j

)

w
(α)
j−1, j = 1, 2, · · · . (29)

Further manipulations provide an algorithm for fixed-step numerical
time-domain evaluation of fractional-order transfer functions.
Please see [3] for details.



Frequency-domain analysis
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Frequency-domain response may be obtained by substituting
s = jω in (23). The complex response for a frequency ω ∈ (0; ∞)
can then be computed as follows:

G(ω) =
bm(jω)βm + bm−1(jω)

βm−1 + · · ·+ b0(jω)
β0

an(jω)αn + an−1(jω)αn−1 + · · ·+ a0(jω)α0
, (30)

where j is the imaginary unit.

It should be noted, that frequency-domain analysis is a very
important tool where fractional-order modeling and control design
are concerned.



Time-domain identification: Output error
minimization
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Given the transfer function model in (23)

G(s) =
bmsβm + bm−1s

βm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0

we search for a parameter set θ = [ ap αp bz βz ], such that

ap = [ an an−1 · · · a0 ], αp = [ αn αn−1 · · · α0 ],

bz = [ bm bm−1 · · · b0 ], βz = [ βn βn−1 · · · β0 ],

by employing numerical optimization with an objective function
given by an output error norm

∥

∥e (t)
∥

∥

2

2
, where e(t) = y(t)− ỹ(t) is

obtained by taking the difference of the original model output y(t)
and simulated model output ỹ(t).



Time-domain identification: Process models
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Consider the following generalizations of conventional process models used in
industrial control design.

(FO)FOPDT G(s) = K
1+Ts

e−Ls G(s) = K
1+Tsα

e−Ls

(FO)IPDT G(s) = K
s
e−Ls G(s) = K

sα
e−Ls

(FO)FOIPDT G(s) = K
s(1+Ts)

e−Ls G(s) = K
s(1+Tsα)

e−Ls

Therefore, due to additional parameters K (gain) and L (delay) we may
update the identified parameter set discussed previously to

θ = [ K L ap αp bz βz ].



Fractional-order Control: PIλDµ controller
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The control law of the PIλDµ controller can be expressed as follows:

u(t) = Kpe(t) +KiD
−λe(t) +KdD

µe(t), (31)

where e(t) = ysp(t)− y(t) is the error signal. After applying the
Laplace transform to (31) assuming zero initial conditions, the
following equation is obtained:

C(s) = Kp +
Ki

sλ
+Kds

µ (32)

Obviously, when taking λ = µ = 1 the result is the classical
integer-order PID controller.



Fractional-order Control: PIλDµ control loop
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Basics of fractional control: Fractional
control actions
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Let a basic fractional control action be defined as C(s) = K · sγ .
The control actions in the time domain for γ ∈ [−1, 1] with K = 1
under different input signals are given below.
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PID controller vs. PI0.5D0.5 controller:
frequency-domain characteristics

Aleksei Tepljakov 39 / 69
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Fractional-order Control: PIλDµ controller
tuning methods (F-MIGO)
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We would like to establish tuning methods for the FOPID controller similar to
conventional ones (e.g. Ziegler-Nichols tuning formulae). Several methods have been
proposed in literature so far. Consider the F-MIGO method suitable for tuning PIλ

controllers [3]. Suppose we are given a FOPDT process model

G(s) =
K

Ts+ 1
e−Ls, τ =

L

L+ T
, (33)

where τ is the relative dead-time of the system.
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We would like to establish tuning methods for the FOPID controller similar to
conventional ones (e.g. Ziegler-Nichols tuning formulae). Several methods have been
proposed in literature so far. Consider the F-MIGO method suitable for tuning PIλ

controllers [3]. Suppose we are given a FOPDT process model

G(s) =
K

Ts+ 1
e−Ls, τ =

L

L+ T
, (33)

where τ is the relative dead-time of the system.Then

λ =























1.1, if τ > 0.6

1.0, if 0.4 6 τ < 0.6

0.9, if 0.1 6 τ < 0.4

0.7, if τ < 0.1.

and

Kp =
1

K

(

0.2978

τ + 0.000307

)

, Ki =
Kp(τ2 − 3.402τ + 2.405)

0.8578T
.



Optimization based PIλDµ tuning
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Optimization provides general means of tuning a fractional-order
PID controller given a cost function and suitable optimization
constraints. There are several aspects to the problem of designing
a proper controller using constrained optimization:

• The type of plant to be controlled (integer or noninteger order,
nonlinear);

• Optimization criterion (cost function);

• Fractional controller design specifications;

• Specific parameters to optimize in the set {Kp,Ki,Kd, λ, µ};
• Selection of initial controller parameters.
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Optimization based PIλDµ tuning: Cost
function
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In case of a linear model we use time-domain simulation of a
typical negative unity feedback loop

Gcs(s) =
C(s)G(s)

1 + C(s)G(s)
. (34)

For the cost function we consider performance indicies:

• integral square error ISE =
∫ τ
0 e2(t)dt,

• integral absolute error IAE =
∫ τ
0

∣

∣e(t)
∣

∣dt,

• integral time-square error ITSE =
∫ τ
0 te2(t)dt,

• integral time-absolute error ITAE =
∫ τ
0 t

∣

∣e(t)
∣

∣dt.



Optimization based PIλDµ tuning:
Constraints
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The design specifications include:

• Gain margin Gm and phase margin ϕm specifications;

• Complementary sensitivity function T (jω) constraint, providing
A dB of noise attenuation for frequencies ω > ωt rad/s;

• Sensitivity function S(jω) constraint for output disturbance
rejection, providing a sensitivity function of B dB for
frequencies ω < ωs rad/s;

• Robustness to plant gain variations: a flat phase of the system
is desired within a region of the system critical frequency ωcg;

• For practical reasons, a constraint on the control effort u(t)
may also be set.
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The design specifications include:

• Gain margin Gm and phase margin ϕm specifications;
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• Sensitivity function S(jω) constraint for output disturbance
rejection, providing a sensitivity function of B dB for
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• For practical reasons, a constraint on the control effort u(t)
may also be set.



Gain and phase margin specifications
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Approximation of fractional operators
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The Oustaloup recursive filter gives a very good approximation of
fractional operators in a specified frequency range and is widely
used in fractional calculus. For a frequency range (ωb, ωh) and of
order N the filter for an operator sγ , 0 < γ < 1, is given by

sγ ≈ K
N
∏

k=−N

s+ ω′

k

s+ ωk
, K = ωγ

h, ωr =
ωh

ωb
, (35)

ω′

k = ωb(ωr)
k+N+1

2 (1−γ)

2N+1 , ωk = ωb(ωr)
k+N+1

2 (1+γ)

2N+1 .

The resulting model order is 2N + 1.

A modified Oustaloup filter has been proposed in literature [3].



Approximation of fractional-order models
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A general method for approximating a fractional-order model by an
integer-order one may be proposed. Recall the property in (14):

• The fractional-order derivative commutes with integer-order
derivative

dn

dtn
(

aD
α
t f(t)

)

= aD
α
t

(

dnf(t)

dtn

)

= aD
α+n
t f(t).

Thus, for fractional orders α ≥ 1 it holds

sα = snsγ , (36)

where n = α− γ denotes the integer part of α and sγ is obtained
by the Oustaloup approximation in (35).



Example: Oustaloup filter approximation
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The fractional-order transfer function is

G(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
,

and approximation parameters ω = [10−4; 104], N = 5.
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Discrete-time approximation: The zero-pole
matching equivalents method
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Continuous zeros and poles, obtained using the Oustaloup recursive
filter, are directly mapped to their discrete-time counterparts by
means of the relation

z = esTs , (37)

where Ts is the desired sampling interval. The gain of the resulting
discrete-time system H(z) must be corrected by a proper factor.

For the synthesis of continuous zeros and poles using the Oustaloup
method with the intent to obtain a discrete-time approximation the
transitional frequency ωh may be chosen such that

ωh 6
2

Ts
. (38)



Fractional-order integrator: Implementation
considerations
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We now address the issue of implementing the fractional-order integrator
component. A continuous-time integrator of order λ has to be
implemented as

GI(s) =
1

sλ
=

s1−λ

s

to ensure a nice control effect at lower frequencies.
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We now address the issue of implementing the fractional-order integrator
component. A continuous-time integrator of order λ has to be
implemented as

GI(s) =
1

sλ
=

s1−λ

s

to ensure a nice control effect at lower frequencies. Its discrete-time
equivalent is given by

HI(z
−1) = H1−λ(z−1) ·HI(z

−1), (39)

where H1−λ(z) is computed using the method presented above, and

HI(z
−1) =

Ts

(1− z−1)
(40)

is a simple discrete-time integrator.



Part IV: CACSD Tools and Applications of
Fractional-order Control
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FOMCON project: Fractional-order
Modeling and Control
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• Official website: http://fomcon.net/

• Toolbox for MATLAB available;

• An interdisciplinary project supported by the Estonian Doctoral
School in ICT and Estonian Science Foundation grant nr. 8738.

http://fomcon.net/


FOMCON toolbox: Structure
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FOMCON toolbox: FOTF Viewer
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FOMCON toolbox: Time-domain
identification
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FOMCON toolbox: Optimization based
PIλDµ tuning
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Example: Fractional-order control of the
coupled tanks system
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The system is modeled in continuous time in
the following way:

ẋ1 =
1

A
u1 − d12 − w1c1

√
x1, (41)

ẋ2 =
1

A
u2 + d12 − w2c2

√
x2,

where x1 and x2 are levels of fluid, A is the
cross section of both tanks; c1, c2, and c12 are
flow coefficients, u1 and u2 are pump powers;
valves are denoted by wi : wi ∈ {0, 1} and

d12 = w12 · c12·sign(x1 − x2)
√

|x1 − x2|.



Example: Experiments with controller
implementation: Hardware platform
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Example: Fractional-order control of the
coupled tanks system (continued)
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Our task is to control the level in the first tank. We identify the
real plant from a step experiment with w1 = w12 = 1, w2 = 0 in
(41). The resulting fractional-order model is described by a transfer
function

G2 =
2.442

18.0674s0.9455 + 1
e−0.1s. (42)

We notice, that this model does not tend to exhibit integer-order
dynamics. Due to the value of the delay term the basic tuning
formulae for integer-order PID tuning do not provide feasible
results. It is possible to select some starting point manually and
run optimization several times. However, it is important to choose
the correct frequency domain specifications to ensure control
system stability.



Example: Fractional-order control of the
coupled tanks system (continued)
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In our case the goal is to minimize the impact of disturbance, so
constraints on the sensitivity functions could be imposed. Our
choice is such that

∣

∣T (jω)
∣

∣ ≤ −20 dB, ∀ω ≥ 10 rad/s and
∣

∣S(jω)
∣

∣ ≤ −20 dB, ∀ω ≤ 0.1 rad/s. The gain and phase margins
are set to Gm = 10dB and ϕ = 60◦, respectively. Additionally, in
order to limit the overshoot, the upper bound of control signal
saturation was lowered from 100% to 60%. Using the IAE
performance metric we finally arrive at the following PIλDµ

controller parameters by optimizing the response of the nonlinear
system in Simulink:

Kp = 6.9514, Ki = 0.13522, Kd = −0.99874,

λ = 0.93187, µ = 0.29915. (43)



Example: Fractional-order control of the
coupled tanks system (continued)
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Example: Fractional-order control of a servo
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Example: Fractional-order control of a servo
system (continued)
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The following transfer function is identified:

G(s) =
192.1638

s(1.001s+ 1)
.

The generic PD controller parameters provided by INTECO are
Kp = 0.1,Kd = 0.01. We shall use these parameters as the initial
ones for the optimization.

The results of optimization are such, that after 100 iterations the
gains of the PD controller have been found as Kp = 0.055979 and
Kd = 0.025189.

After fixing the gains and manually perturbing the value of µ to
0.5, the optimized PDµ controller is obtained with µ = 0.88717.
Phase margin of the open loop control system is ϕm = 65.3◦.



Example: Fractional-order control of a servo
system (continued)
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Experimental setup for evaluating the digital implementation of the
fractional-order PID controller:



Example: Fractional-order control of a servo
system (continued)
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Example: Electrical network approximations
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In this example, our goal is to obtain an analog implementation a
fractional controller for a model of a position servo

G(s) =
1.4

s(0.7s+ 1)
e−0.05s.

The design specifications are as follows: phase margin ϕ = 80◦,
gain crossover frequency ωcg = 2.2 rad/s. The proposed controller
design, based on robustness considerations, is derived from the
desired frequency domain characteristics of the plant, in the form
of a fractional lead compensator (≈PDµ controller):

C(s) =

(

2.0161s+ 1

0.0015s+ 1

)0.7020

.



Example: Electrical network approximations
(continued)
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Example: Electrical network approximations
(continued)
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Example: Electrical network approximations
(continued)
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Bode Diagram

Frequency  (rad/s)

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

System: Compensated
Gain Margin (dB): 24.9
At frequency (rad/s): 23.3
Closed loop stable? Yes

System: Uncompensated
Gain Margin (dB): 23.2
At frequency (rad/s): 5.28
Closed loop stable? Yes

 

 

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

−270

−225

−180

−135

−90

−45

0 System: Compensated
Phase Margin (deg): 85.5
Delay Margin (sec): 0.71
At frequency (rad/s): 2.1
Closed loop stable? Yes

System: Uncompensated
Phase Margin (deg): 49.1
Delay Margin (sec): 0.774
At frequency (rad/s): 1.11
Closed loop stable? Yes

P
ha

se
 (

de
g)

Uncompensated
Compensated



References

Aleksei Tepljakov 69 / 69

[1] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and
Fractional Differential Equations, Wiley, New York, 1993.

[2] I. Podlubny, Fractional Differential Equations, Academic Press, San
Diego, CA, 1999.

[3] C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu,
Fractional-order Systems and Controls Fundamentals and
Applications, Springer-Verlag, London, 2010.

[4] R. Hilfer, Applications of Fractional Calculus in Physics, World
Scientific, Singapore, 2000.

[5] I. Podlubny, Geometric and Physical Interpretation of Fractional
Integration and Fractional Differentiation, Fractional Calculus and
Applied Analysis, vol. 5, no. 4, pp. 367-386, 2002.


	Lecture overview
	Part One: Mathematical Basis of Fractional-order Calculus
	Introduction: Historical facts
	Fractional derivative of a power function: An approach based on intuition
	The Gamma function
	Example: fractional-order derivative of a function f(x)=x
	Fractional derivative of a trigonometric function: An approach based on intuition
	Half derivative of a sine function
	Repeated differentiation: Backward difference equation
	Repeated differentiation: Backward difference equation based generalization
	Fractional-order derivative: Important alternative definitions
	The generalized operator
	Properties of fractional-order differentiation
	Properties of fractional-order differentiation (continued)
	On the meaning of the fractional-order derivative
	Exercise: Integration

	Part Two: Factional-order Calculus in Modeling and Control of Dynamic Systems
	Laplace transform
	Fractional-order derivative definitions: Laplace transform
	Fractional-order models
	Linear, time invariant fractional-order system classification
	Fractional-order transfer functions
	Fractional-order transfer functions and state-space representation
	Example: From a FO transfer function to the FO state-space form
	Example: Fractional system composition
	Example: Fractional system composition (solution)
	Stability
	Stability regions
	Exercise: Stability
	Example: Stability evaluation of a relatively complex system
	Time-domain analysis
	Frequency-domain analysis
	Time-domain identification: Output error minimization
	Time-domain identification: Process models
	Fractional-order Control: PID controller
	Fractional-order Control: PID control loop
	Basics of fractional control: Fractional control actions
	PID controller vs. PI0.5D0.5 controller: frequency-domain characteristics
	Fractional-order Control: PID controller tuning methods (F-MIGO)
	Optimization based PID tuning
	Optimization based PID tuning: Cost function
	Optimization based PID tuning: Constraints
	Gain and phase margin specifications
	Approximation of fractional operators
	Approximation of fractional-order models
	Example: Oustaloup filter approximation
	Discrete-time approximation: The zero-pole matching equivalents method
	Fractional-order integrator: Implementation considerations

	Part IV: CACSD Tools and Applications of Fractional-order Control
	FOMCON project: Fractional-order Modeling and Control
	FOMCON toolbox: Structure
	FOMCON toolbox: FOTF Viewer
	FOMCON toolbox: Time-domain identification
	FOMCON toolbox: Optimization based PID tuning
	Example: Fractional-order control of the coupled tanks system
	Example: Experiments with controller implementation: Hardware platform
	Example: Fractional-order control of the coupled tanks system (continued)
	Example: Fractional-order control of the coupled tanks system (continued)
	Example: Fractional-order control of the coupled tanks system (continued)
	Example: Fractional-order control of a servo system
	Example: Fractional-order control of a servo system (continued)
	Example: Fractional-order control of a servo system (continued)
	Example: Fractional-order control of a servo system (continued)
	Example: Electrical network approximations
	Example: Electrical network approximations (continued)
	Example: Electrical network approximations (continued)
	Example: Electrical network approximations (continued)
	References


