Closed-loop PID tuning methods

Aim of the work

Using the data obtained from the tests of the closed-loop control system (Åström-Hägglund method), PID parameters can be set. Work purpose is tuning of the controller and system performance verification.

1 Equipment

Controller E5CN or E5CN-H

- Controller type: PID;
- Sensor: temperature (thermocouple type K voltage $0...50 \ mV \ DC$);
- Output signals: reverse characteristics (for heating).

Process

Thermal object static characteristics are known. Dynamics of the process is unknown, due to the fact that system is "object + thyristor".

Thyristor Y13 with an input signal $i = 4 \dots 20 \ mA$ and output signal $U_{RMS} = 0 \dots 230 \ V$.

Signals recording

• Software oscilloscope Velleman PCSU1000 (PCLab2000) and the amplifier.

TASK

- 1. Control criteria: Step response of the system should be fast and with a small overshoot σ (not greater than 5%).
- 2. Tune a controller for the object with known parameters.
 - (a) Object desired temperature is 180 $^{\circ}C$.
 - (b) Use thyristor as actuator.

Work flow

2 Assembling

✓ Check if Thyristor is turned off (Power OFF).

- ✓ Assemble the test process (see Fig. 1): controller, actuator and the same thermal object you used in Lab. No. 1.
 - Connect output of the controller with input of the thyristor using Current to Voltage
 Converter black and red input jacks.
 - Connect output of the controller with the CH2 of the Digital Oscilloscope using Current to Voltage Converter black and yellow input jacks.
- \checkmark As the load for the actuator plug the lamp.

Figure 1: Assembling diagram: PID Control

3 Choice of the operation point

✓ Find out static characteristic $T[{}^{\circ}C] = F(i[\%])$ of the block ("thyristor + object"). Use data obtained in Lab. No 1 and Lab. No 3.

Our system is linear, thus it can be tested with any operating point. Lets limit the controller's output i symmetrically in the neighborhood of the operating point $i = i_0 \pm i_m$. If controller's output signal changes inside the whole range $0\% \dots 100\%$ or $50\% \pm 50\%$, then operating point is $i_0 = 50\%$ and output signal amplitude is $i_m = 50\%$.

- \checkmark Calculate your object temperature T which corresponds to the signal $i_0 = 50\%$.
- ✓ Set that value as the SV to the controller in **Operation Level**.

4 Tests

- ✓ Change the controller's type: two-position (ON/OFF) controller in **Initial Settings Level**.
- ✓ Set minimal possible hysteresis H value in **Adjustment Level**.
- ✓ Check the applicability of other parameters such as thermocouple: type K, characteristic: reverse.

- √ Transient Recorder Mode of the Digital Oscilloscope set the next parameters for signal registration
 - CH1 is 0.2 V/div via amplifier (offset = 0-leftmost position);
 - CH2 is 0.2 V/div output of the controller i(t) through resistor $R = 47.5\Omega$;
 - Shift signal CH1 level to the bottom of the screen and CH2 level to the middle of the screen.
 - Registration speed is $20 \ s/div$.
- ✓ Plug in cooler and turn on the actuator.
- ✓ Observe signal with minimum hysteresis value min H:
 - 1. Wait until process steady-state, read $T_{\rm max}$ and $T_{\rm min}$ from the controller's display
 - 2. Record oscillations, study signal more precisely $(5 \ s/div)$, save figure. Do NOT close the graph!

5 Calculation of the controller's parameters

- ✓ Determine from the obtained test data next parameters:
 - 1. Process input amplitude i_m [%] (output of the controller);
 - 2. Process output amplitude T_m [${}^{\circ}C$];
 - 3. Period of oscillations P_u
- \checkmark Calculate ultimate gain is $K_u = \frac{T_m \cdot \pi}{4 \cdot i_m}$.
- ✓ Calculate the controller parameters $K_c(\Rightarrow Pb), T_i, T_d$ (see Lecture 8, Section 4.2).

6 Control system performance

- ✓ Set the SV = $180 \, ^{\circ}C$ in Operation Level.
- ✓ Change the controller's type PID in **Initial Settings Level**.
- ✓ Set all PID tuning parameters in **Adjustment Level**.
- ✓ To observe signal more precisely at the temperature 180 $^{\circ}C$ neighborhood
 - 1. Change the oscilloscope CH1 range to $20 \ mV/div$;
 - 2. Shift the signal level to the second division (from the bottom) on the screen ≈ 6 divisions of Output Offset \curvearrowright .

6.1 Make the next tests:

- 1. Change SV value 180 ° $C \rightleftharpoons 200$ °C step response test;
 - (a) Observe overshoot σ [%],
 - (b) Settling time T_s .
- 2. Switch off/on the cooler reaction on disturbances.

If reaction is unsatisfactory (does not satisfy control criteria) change the PID tuning parameters and repeat the tests.

7 Auto-tuning

- ✓ Wait for the steady-state.
- ✓ Turn on the auto-tuning "At: At-2" in **Adjustment Level**. Do nothing until "At" indicator in Adjustment Level or "SV" value in Operation Level stops to flash.
- ✓ When tuning process is stopped check the new controllers parameters. Write those down.
- \checkmark Make the tests (1-2) from subsection 6.1.

7.1 Completion of the work

- ✓ Turn of the thyristor (Power OFF).
- \checkmark Disassemble the object input, output.

8 Calculations

- 1. Provide calculations of the controllers parameters and the results of the tests.
- 2. Evaluate controller performance: what are the overshoot and the settling time values.