PID controller with analog output

Aim of the work

Getting to know features of the PID controller, thyristor (Y13) and theirs applications. Open-loop step response of the controller various modes.

1 Equipment

Controller E5CN or E5CN-H

- Controller type: PID;
- Sensor: temperature (thermocouple type K voltage $0...50 \ mV \ DC$);
- Output signals: current with range $4...20 \ mA$.

Controller parameters can be observed and set using settings menu.

DC Power supply

DC supply output range is $0...10 \ mV$. It is used to simulate a thermocouple signal. Voltage can be turned ON/OFF and its value can be changed.

Thyristor (Y13)

Thyristor controls the output voltage U, so that that power $P \equiv U^2$ given to load (thermal object), is proportional to the input signal i, thus $U \equiv \sqrt{i}$. This enables to compensate the nonlinear behavior of the thermal object temperature $T({}^{\circ}C)$ with respect to input voltage U.

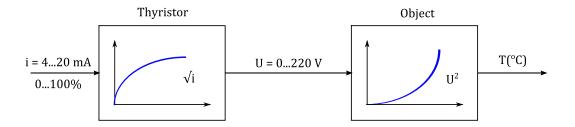


Figure 1: Linearization of the controlled process using tyristor

Voltmeter

Multimeter for controller output measurement $OUT = 4 \dots 20 \ mA$.

Signals recording

- Software oscilloscope Velleman PCSU1000 (PCLab2000).
- Tektronix TDS 2001C with signal power divider (1:100).

Work flow

Check settings of the controller, assemble the circuit, read and calculate parameters.

2 Controller mode

Use simplified menu and check the next controller parameters:

- Is thermocouple type K-1 (in-t 6)?
- Is controller mode PID (Cntl PID)?
- Is characteristic reverse ($\tilde{o}rEV \ \tilde{o}r-r$)?
- What are the units of **P,I,D** parameters?
- What is the range of setpoint **SV** (SL-H, SL-L)?

3 Assembling

 \checkmark For the first test assemble a circuit Fig. 2-(1).

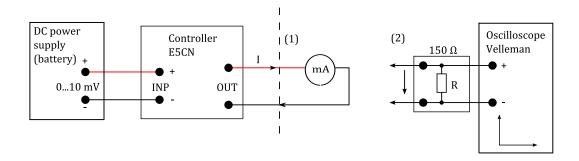


Figure 2: Studies of PID controller reaction on error: (1)-measuring output, (2)-recording output signal

4 Controller modes

The next parameters should be used during all tests

- ✓ Set the setpoint $SV = 40 \, ^{\circ}C$;
- ✓ Set the proportional band $PB = 50 \, ^{\circ}C$.

4.1 P-mode controller

 \checkmark Set reset and derivative time $T_i = 0, T_d = 0$, respectively.

Static characteristics of the controller

 \checkmark Simulate the thermocouple signal U_{tp} using DC supply outu E.

Change voltage value on DC power supply, observe how temperature is changing.

✓ Measure controller output values i[mA] with multimeter, read temperature values $T[{}^{\circ}C]$ from controller display.

To obtain a characteristics measure values at 3 points *inside* the Proportional Band. Consider cases where PV is outside the range.

Calculations

- 1. For the measured values convert controller output units i[mA] into OUT[%].
- 2. Provide static characteristics $OUT(\%) = f(PV(^{\circ}C))$.

Step response registration

Study of P controller reaction on error of the control: recording of the controller output.

- \checkmark Disconnect a voltmeter and assemble a circuit Fig. 2-(2).
- ✓ In Transient recorder mode set oscilloscope parameters (0.5 V/div, DC, 20 s/div). Turn off CH2.
- ✓ Set input signal PV = 40 °C using DC power supply. In that case $PV = SV \implies \text{error } e = 0$.
- ✓ Shift signal to the bottom of the screen. Start recoding using oscilloscope Single mode.
- \checkmark Create error on the input of the controller:

If DC power supply has switch "Short Output / Normal Output", change mode to "Short Output".

In all other cases use switch "Power On / Off" and turn off the power supply.

3

 \checkmark Read the obtained temperature value T, calculate e.

```
Input step change is PV = SV \rightarrow PV = T_0.
```

✓ Record the step response signal, observe the precess (also see Lecture 6: Continuous controllers, Sec. 1.1), when signal doesn't change eliminate input error.

If DC power supply has switch "Short Output / Normal Output", change mode to "Normal Output".

In all other cases use switch "Power On / Off" and turn on the power supply.

 \checkmark Continue registration in the same figure, start the next test.

4.2 PD-mode controller

- \checkmark Add the derivative component $T_d = 7 \ s$ to the controller parameters.
- ✓ Observe a process, also see Lecture 6: Continuous controllers, Sec. 1.4.
- ✓ When signal doesn't change eliminate input error (see description above).

4.3 PI-mode controller

- ✓ Check if signal is on initial level, otherwise see "Wind up" avoidance in the following section.
- ✓ Change tuning parameters: $T_i = 50 \text{ s}, T_d = 0 \text{ s}.$
- \checkmark Observe a process, also see Lecture 6: Continuous controllers, Sec. 1.3.
- √ When signal doesn't change stop registration. Measure all needed parameters, see Calculations
 4.4.
- ✓ Save figure with the next information: Lab. #., Student names, Date.
- ✓ Eliminate input error (see description above).

4.4 PID-mode controller

- ✓ To avoid "Wind up" situation and to reset the controller's output value do the following
 - 1. Put controller to the **STOP** mode. See indication on the controller's display.
 - 2. Set the **RUN** mode again.
 - 3. Signal drops on the initial level and if $PV = SV \implies OUT = 0\%$.
- ✓ Change the tuning parameters: $T_i = 50 \ s, T_d = 7 \ s.$
- ✓ Observe a process. Save figure.

Calculations

Open *Lecture 6*: Continuous controllers: PID. Found out how to obtain settings of the controller from output characteristics.

Calculate:

- 1. P controller gain K_c and PB from both test in Section 4.1;
- 2. PD controller real transfer function $W_c(s) = K_c \left(1 + \frac{T_d \cdot s}{1 + T_p \cdot s} \right)$ and parameter T_p ;
- 3. PI controller real parameters.

5 Thyristor Y13

 \checkmark Assemble test object.

NB! For controller's output measurement multimeter should be connected in series with a thyristor.

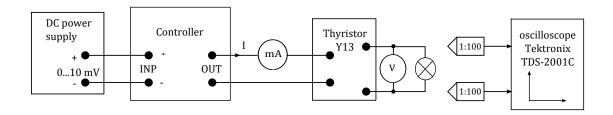


Figure 3: Schematic diagram for thyristor output studies

- ✓ Set controller into P-mode.
- ✓ Erase value from the output: use **STOP** mode.
- ✓ Plug lamp to the thyristor.

The right working mode of the thyristor can be provided with a load.

5.1 Thyristor

✓ Measure controller output values i[mA] with multimeter, and output values of the thyristor U[V].

To obtain a characteristics measure values at 3 points inside the Proportional Band. Consider cases where PV is outside the range.

Oscilloscope TDS2001C

✓ Connect analog oscilloscope with a voltmeter (pointer gauge) using signal power divider (1:100).

Check if:

- 1. Scale is right
 - Push **AutoRange** button, which activates the autoranging function. Choose both: horizontal and vertical scaling.
- 2. Coupling AC
- 3. CH1 CH2 (the channel 2 waveform is subtracted from the channel 1 waveform)
 Push the Math button to display waveform math operations.
- 4. Probe Voltage 100X

Push $1 \to \mathbf{Probe} \to \mathbf{Current} \to \mathbf{Scale}$ and select an appropriate value.

Cursors

This method allows you to take measurements by moving the cursors. There are two types of cursors: Amplitude and Time. To use cursors use **Cursor** button. Use **Time Cursors** in order to measure the thyristor firing angle α and period T.

Measure

Push the **Measure** button to access automatic measurements. Use one of the next measurements types: $P_k - P_k$, RMS, Max or Min in order to obtain U_m value.

5.2 Calculations

- 1. Provide characteristic U[V] = f(i[%]) as a table and equation, see Fig. 1.
- 2. Provide output signal u(t) for one of the input values, figure from Tektronix oscilloscope.
- 3. Calculate the (Y13+object) characteristic $T({}^{\circ}C) = F(i[\%])$. (How temperature of the object depends on thyristor Y13 input signal.) Use data obtained during test at Lab No 1 (Thermal object).
- 4. Provide parameters for equation (1): how thyristor RMS $U(U_m, \alpha)$ depends on sinusoidal signal amplitude U_m and thyristor firing angle α .

$$U_{RMS} = \sqrt{\frac{1}{T} \int_{\alpha}^{T} U_m^2 \sin^2(\omega t) dt},$$
(1)

where T is a period of oscillation.