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What is an optimum?
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Global optimization is a branch of applied mathematics and
numerical analysis that focuses on optimization.

The goal of global optimization is to find the best possible elements
x⋆ ∈ X according to a set of criteria F = {f1(x), f2(x), .., fn(x)}.
These criteria are expressed as mathematical functions, the
so-called objective functions.

We consider two cases:

• Single objective functions,

• Multiple objective functions.



Optimum
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A global maximum x̂l ∈ X of one (objective) function f : X 7→ R
is an input element with

f(x̂l) > f(x) ∀x ∈ X. (1)

A global minimum x̌l ∈ X of one (objective) function f : X 7→ R
is an input element with

f(x̌l) 6 f(x) ∀x ∈ X. (2)

A global optimum x⋆l ∈ X of one (objective) function f : X 7→ R
is either a global maximum or a global minimum.



Objective Functions
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For a single criterion f , the optimum is its maximum or minimum.

In global optimization the optimization problems are most often
defined as minimizations and if criterion f is subject to
maximization, we minimize its negation (−f).

The optimal set X
⋆ is the set that contains all optimal elements.

There are normally multiple, often infinitely many optimal solutions.

The tasks of global optimization algorithms are to find solutions to
the problem that are

1. as good as possible given the provided cost, bounds, and
constraints, and

2. widely different from each other [1].



Multiple Objective Functions
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Algorithms designed to optimize sets of objective functions (sets F

consisting of n = |F | objective functions fi, each representing one
criterion to be optimized) are usually named with the prefix
Multi-Objective.

Multi-objective optimization often means to find a feasible compromise
between conflicting goals.

To find the global optimum could mean to maximize one function fi ∈ F

and to minimize another one fj ∈ F, (i 6= j). Hence, it makes no sense
to talk about a global maximum or a global minimum in terms of
multi-objective optimization. Thus notation of the set of optimal
elements is x

⋆ ∈ X
⋆ ⊆ X.

Since compromises for conflicting criteria can be defined in many ways,

there exist multiple approaches to define what an optimum is. These

different definitions, in turn, lead to different sets X⋆.



Weighted Sum

7 / 42

The simplest method to define what is optimal is computing a
weighted sum g(x) of all the functions fi(x) ∈ F . Each objective
fi is multiplied with a weight wi representing its importance.

g(x) =
n∑

i=1

wifi(x) =
∑

∀fi∈F
wifi(x). (3)

Using signed weights also allows us to minimize one objective and
to maximize another.



Weighted Sum Method: Illustration
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Multi-objective problems are reduced to single-objective ones by
this method.



Domination
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Pareto optimality defines the frontier of solutions that can be reached by
trading-off conflicting objectives in an optimal manner. From this front, a
decision maker can finally choose the configurations that, in his opinion, suit
the problem best.

Domination. An element x1 dominates (is preferred to) an element x2

(notation: x1 ⊢ x2), if x1 is better than x2 in at least one objective function
and not worse with respect to all other objectives.

x1 ⊢ x2 ⇔ ∀i > 0 < i 6 n ⇒ wifi(x1) 6 wifi(x2)∧
∃j : 0 < j 6 n : wjfj(x1) < wjfj(x2). (4)

wi =

{

1 if fi should be minimized

−1 if fi should be maximized
(5)

The factors wi only carry sign information which allows us to maximize some
objectives and to minimize some other criteria.



Pareto Optimal
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An element x⋆ ∈ X is Pareto optimal if it is not dominated by
any other element in the problem space X. In terms of Pareto
optimization, X⋆ is called the Pareto set or the Pareto frontier.

x⋆ ∈ X⋆ ⇔ ∄x ∈ X : x ⊢ x⋆. (6)



Structure of optimization
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Defenitions [2]
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The problem space X (phenome) of an optimization problem is the set
containing all elements x which could be its solution.

A solution candidate (phenotype) x is an element of the problem space X of a
certain optimization problem.

The elements g ∈ G of the search space G of a given optimization problem are
called the genotypes.

The distinguishable units of information in a genotype that encode the
phenotypical properties are called genes.

An allele is a value of specific gene.

The Genotype-Phenotype Mapping (GPM) gpm : G 7→ X is a left-total binary
relation which maps the elements of the search space G to elements in the
problem space X.

∀g ∈ G ∃x ∈ X : gpm(g) = x.



Genotype-Phenotype Mapping
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An optimization problem is defined by a five- tuple
(X, F,G, SearchOp, gpm) specifying the problem space X, the
objective functions F , the search space G, the set of search
operations SearchOp, and the genotype-phenotype mapping gpm.



Optimization Algorithm
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The fitness value fit(x) ∈ V of an element x of the problem space
X corresponds to its utility as solution or its priority in the
subsequent steps of the optimization process. The space spanned
by all possible fitness values V is normally a subset of the positive
real numbers V ⊆ R+.

An optimization algorithm is characterized by

1. The way it assigns fitness to the individuals.

2. Ways it selects them for further investigation.

3. The way it applies the search operations.

4. The way it builds and treats its state information.



Global Optimization Algorithm
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Global optimization algorithms are optimization algorithms that
employ measures that prevent convergence to local optima and
increase the probability of finding a global optimum.

1. Optimization algorithms discover good solutions with higher
probability than solutions with bad characteristics.

2. The success of optimization highly depends on the way the
search is conducted.

3. It also depends on the time (or the number of iterations) the
optimizer allows to use.

4. Hill climbing algorithms are not global optimization algorithms
since they have no means of preventing getting stuck at local
optima.



Problems in Optimization
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Premature Convergence
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We say that an optimization process has prematurely converged to
a local optimum if it is no longer able to explore other parts of the
search space than the area currently being examined and there
exists another region that contains a superior solution.



Premature Convergence (continued)
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There is no general approach which can prevent premature
convergence. Possible solutions:

1. Sometimes an effective measure is to restart the optimization
process at randomly chosen points in time (clearing
intermediate variables).

2. Increasing the proportion of exploration operations may also
reduce the chance of premature convergence.

3. Introducing the capability of self-adaptation, allowing the
optimization algorithm to change its strategies or to modify its
parameters depending on its current state.



Ruggedness
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If the objective functions are unsteady or fluctuating, i.e., going up and down,
it becomes more complicated for the optimization process to find the right
directions to proceed to.

Countermeasures: no viable method which can directly mitigate the effects of
rugged fitness landscapes exists. In population-based approaches, using large
population sizes and applying methods to increase the diversity can reduce the
influence of ruggedness, but only up to a certain degree.



Deceptiveness

20 / 42

The gradient of deceptive objective functions leads the optimizer
away from the optima.

Using large population sizes, maintaining a very high diversity, and
utilizing linkage learning are the only approaches which can provide
at least a small chance of finding good solutions.



Neutrality
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We consider the outcome of the application of a search operation to an element
of the search space as neutral if it yields no change in the objective values.

An optimizer then cannot find any gradient information and thus, no direction
in which to proceed in a systematic manner.

The evolvability of an optimization process in its current state defines how

likely the search operations will lead to solution candidates with new values of

the objectives.



Redundancy
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Redundancy in the context of global optimization is a feature of
the genotype-phenotype mapping and means that multiple
genotypes map to the same phenotype.

Redundancy can have a strong impact on the explorability of the
problem space. When utilizing a one-to-one mapping, the
translation of a slightly modified genotype will always result in a
different phenotype. If there exists a many-to-one mapping
between genotypes and phenotypes, the search operations can
create offspring genotypes different from the parent which still
translate to the same phenotype.



Overfitting
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Overfitting is the emergence of an overly complicated model (solution
candidate) in an optimization process resulting from the effort to provide
the best results for as much of the available training data as possible and
which works well only for the training data.

A model m ∈ X optimized based on a finite set of training data is
considered to be overfitted if a less complicated, alternative model
m′ ∈ X exists which has a smaller error for producible data samples.



Overfitting (continued)
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Possible solutions:

1. Use a new set of scenarios for each evaluation of a solution
candidate. The resulting objective values may then differ largely even
if the same individual is evaluated twice in a row, introducing
incoherence and ruggedness into the fitness landscape.

2. At the beginning of each iteration of the optimizer, a new set of
(randomized) scenarios is generated which is used for all individual
evaluations during that iteration. This method leads to objective
values which can be compared without bias. They can be made even
more comparable if the objective functions are always normalized
into some fixed interval, say [0, 1].

3. Limit the runtime of the optimizers.



Oversimplification
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The training sets only represent a fraction of the set of possible inputs.
Be aware of such an incomplete coverage which may fail to represent
some of the dependencies and characteristics of the data, which then
may lead to oversimplified solutions.

Another reason for oversimplification is that ruggedness, deceptiveness,
too much neutrality, may lead to premature convergence. Yet another
possible cause is that a particular problem space could have been chosen
such that does not include the correct solution.



Evolutinary Algorithm
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EA
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Evolutionary algorithms (EAs) are population-based
metaheuristic optimization algorithms that use biology-inspired
mechanisms like mutation, crossover, natural selection, and survival
of the fittest in order to refine a set of solution candidates
iteratively.

Basic steps of EA:



Family of EA
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1. Genetic Algorithms (GA) subsume all evolutionary algorithms which have
bit strings as search space G.

2. The set of evolutionary algorithms which explore the space of real vectors
X ⊆ Rn is called Evolution Strategies (ES).

3. On one hand, Genetic Programming (GP) includes all evolutionary
algorithms that grow programs, algorithms, and these alike. On the other
hand, also all EAs that evolve tree-shaped individuals are instances of GP.

4. Learning Classifier Systems (LCS) are online learning approaches that
assign output values to given input values. They internally use a GA to
find new rules for this mapping.

5. Evolutionary programming (EP) is an evolutionary approach that treats
the instances of the genome as different species rather than as individuals.
Over the decades, it has more or less merged into Genetic Programming
and the other evolutionary algorithms.



Populations
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There exist various way in which an evolutionary algorithm can
process its population.

In evolutionary algorithms that are generational the next
generation will only contain the offspring of the current one and no
parent individuals will be preserved.

An elitist evolutionary algorithm ensures that at least one copy of
the best individual(s) of the current generation is propagated on to
the next generation.

The main advantage of elitism is that its convergence is guaranteed,
meaning that once the global optimum has been discovered, the
evolutionary algorithm converges to that optimum. On the other hand,
the risk of converging to a local optimum is also higher.



Genomes
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A string chromosome can either be a fixed-length tuple or a variable-length list.
String chromosomes are normally bit strings, vectors of integer numbers, or
vectors of real numbers. Example (NARX neural network representation):

gene = [1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1].



GA Operations
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Mutation is an important method for preserving the diversity of
the solution candidates by introducing small, random changes into
them.

• In binary coded chromosomes, for example, these genes would
be bits which can simply be toggled.

• For real-encoded genomes, modifying an element gi can be
done by replacing it with a number drawn from a normal
distribution with expected value g1.

Crossover is a recombination of two string chromosomes, which is
performed by swapping parts of two genotypes.



Crossover
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Particle Swam Optimization
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When a swarm looks for food, its individuals will spread in the
environment and move around independently. Each individual has a
degree of freedom or randomness in its movements which enables it to
find food accumulations. So, sooner or later, one of them will find
something digestible and, being social, announces this to its neighbors.
These can then approach the source of food, too.

With Particle Swarm Optimization (PSO), a swarm of particles
(individuals) in a n-dimensional search space G is simulated, where each
particle p has a position p.g ∈ G ⊆ Rn and a velocity p.v ∈ Rn. The
position p.g corresponds to the genotypes, and, in most cases, also to the
solution candidates, i. e., p.x = p.g, since most often the problem space
X is also the Rn and X = G. The velocity vector p.v of an individual p
determines in which direction the search will continue and if it has an
explorative (high velocity) or an exploitive (low velocity) character.



Diffential Evolution
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Taking the difference between the two differentiation vectors is very
much like taking the derivative. But as the two differentiation vectors are
usually quite far apart (certainly not infinitesimally far), this “derivative”
is more a global measure of how much the objective function changes on

average over that interval.

The derivative is computed at each iteration between two new, randomly

selected vectors, so on average, the solutions will tend to go to where the
average slope is zero, and the function globally minimal. Sometimes this
operation is called the global pseudo-derivative, and it is the key to the
power of the DE algorithm.

Numerous variations on this basic algorithm exist. However, they
normally improve DE’s performance only marginally, and as such, they
will not be mentioned here.



ASA
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Traditionally, for Adaptive Simulated Annealing, individual trial
solutions are called “atoms” or “particles”, to reflect the method’s
underlying philosophy - as the temperature drops, the atoms
literally “freeze” into low-energy states (low function values). But
before they freeze, they have the ability to move to higher energy
states, with a certain probability. This is what makes ASA also a
global optimizer, in the sense that it is not “greedy” as to only
accept lower function values, but also explores regions behind
high-energy barriers.

Originally, Simulated Annealing was built around a single solution
(the initial condition). However, this method is easily rewritten into
a population-based method (just use N randomly generated initial
conditions).



Symbolic Regression
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Motivation for Symbolic Regression
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• Machine learning methods such as Artificial Neural Networks
produce models that cannot be analyzed symbolically.
Meanwhile, Symbolic Regression produces symbolic models
(mathematical expressions).

• Symbolic Regression allows to evolve models without any initial
assumptions about model structure.

• A model portfolio is generated that contains models of different
levels of complexity and predictive quality.

• Hidden, nonlinear relationships in the data may be discovered.

Enter GPTIPS 2: an open-source software platform for symbolic
data mining implemented in MATLAB.



Symbolic Regression: Key Concepts
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Symbolic regression essentially evolves computer programs based on given
criteria. The programs are usually represented as tree data structures. Every
tree is referred to as a gene that, in turn, is comprised of

• functions (symbols) and

• terminals (end nodes)

that for the purpose of computer processing are encoded as a string of

characters.

The underlying principle is that of genetic programming—simulated process of
evolution, where best individuals in the population (candidate symbolic
expressions) are evaluated based upon their fitness (natural selection). New
individuals are obtained via

• Growth—branches are added to trees until a terminal node is selected;

• Mutation—a terminal node is replaced with a random node;

• Crossover—a random node is replaced with a subtree from an individual.



Basic Building Blocks
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Basic building blocks of a multi-gene symbolic regression problem are

• Function set Ffun that contains available function symbols, e.g.,

Ffun =
{

+,−,×,
√

, sin
}

.

• Terminal set Tterm that contains available terminals, e.g.,

Tterm = {x1, x2, εC} ,

where εC is a set of so called ephemeral (random) constants.

The overall expression can be represented as a linear combination of genes as

y = a0 + a1G1 + a2G2 + · · ·+ anGn,

where the vector a =
[

a0 a1 · · · an

]

can be obtained on each iteration
by means of least squares estimation.



Example: Multiple Gene Model
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The model

y = d0 + d1 (0.41x1 + tanh(x2x3))
︸ ︷︷ ︸

G1

+d2 (0.45x3 +
√
x2)

︸ ︷︷ ︸

G2

is represented (without the weights) by two genes as

G1

+

×

0.41 x1

tanh

×

x2 x3

G2

+

×

0.45 x3

√

x2



Example: Encoded String

41 / 42

Encoded expression:

(-(*(-a(sqrt(*ba)))(/(/(-aa)(+bb))(sqrt(+ab))))(+ba))

Corresponding tree:

−

×

−

a sqrt

×

b a

/

/

−

a a

+

b b

sqrt

+

a b

+

b a
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