
 

TALLINN UNIVERSITY OF TECHNOLOGY 

Faculty of Information Technology 

Department of Computer Control 

 

 

 

ISS40LT 

Carl-Martin Ivask 120712 

Raspberry Pi based System for  

Visual Object Detection and Tracking 

Bachelor’s Thesis 

 

 

Supervisors: Eduard Petlenkov, PhD 

Aleksei Tepljakov, MSc 

 

 

 

 

Tallinn 2015 



 

Kinnitan, et olen koostanud antud lõputöö iseseisvalt  ning seda ei ole kellegi teise poolt varem 

kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, 

kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud. 

I hereby declare that this Bachelor’s thesis, my original investigation and achievement, submitted 

for the Bachelor’s degree at Tallinn University of Technology, has not been submitted for any 

degree or examination. 

 

 

Carl-Martin Ivask 

    

(date) (signature)  



 

Annotatsioon 

Käsitletava töö eesmärk on uurida erinevaid meetodeid arvutiga reaalse maailma visuaalselt 

tõlgendamiseks, tutvuda OpenCV API pakutavate lahendustega ning neid implementeerida 

Raspberry Pi platvormile loodud objekte tuvastavas ning jälgivas rakenduses. Põhiline rõhk on 

praktilisel osal. 

Lõputöö tulemuseks on GNU/Linux operatsioonisüsteemile loodud C/C++ programm, mis on 

võimeline tuvastama kasutaja poolt spetsifitseeritud parameetrite järgi kaamerapildil olevaid 

värvilisi objekte ning edastama nende kohta kasulikku informatsiooni (koordinaadid, pindalad, 

värv) kasutades sobivat andmeedastusprotokolli. Programmi lähtekood on dokumenteeritud ning 

loob võimaluse tarkvara efektiivseks edasiarendamiseks. 

 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 34 leheküljel, 6 peatükki, 13 joonist, 4 

tabelit. 



 

Abstract 

The aim of this thesis is to explore different methods for helping computers interpret the real world 

visually, investigate solutions to those methods offered by the open-sourced computer vision 

library, OpenCV, and implement some of these in a Raspberry Pi based application for detecting 

and keeping track of objects. The main focus rests on the practical side of the project. 

The result of this thesis is a GNU/Linux based C/C++ application that is able to detect and keep 

track of objects by reading the pixel values of frames captured by the Raspberry Pi camera module. 

The application also transmits some useful information, such as coordinates and size, to other 

computers on the network that send an appropriate query. The source code of the program is 

documented and can be developed further. 

 

The thesis is in English and contains 34 pages of text, 6 chapters, 13 figures, 4 tables. 



 

 

Nomenclature 

API Application programming interface 

OpenCV Open-sourced Computer Vision library 

UDP User Datagram Protocol 

IDE Integrated development environment 

USB Universal data bus 

SoC System-on-a-chip 

GPU Graphics processing unit 

CSI Camera Serial Interface 

blob A region of coloured pixels – white areas on a binary image 

object For this thesis, an instance of a C structure containing an object’s 

properties 

HSV Hue-Saturation-Value colour space (as opposed to Red-Green-Blue, for 

example) 

GUI Graphical user interface 



 

Table of contents 

1. Introduction ............................................................................................................................ 7 

1.1 Background ....................................................................................................................... 7 

1.2 Aim of thesis ..................................................................................................................... 8 

1.3 Thesis outline .................................................................................................................... 8 

2. Raspberry Pi ........................................................................................................................... 9 

2.1 Setting up the Raspberry Pi for work ............................................................................. 10 

3. OpenCV introduction ........................................................................................................... 12 

3.1 HSV colour space ........................................................................................................... 14 

4. Development of the application ............................................................................................ 15 

4.1 Preparing captured image for object detection ............................................................... 16 

4.2 Finding objects on thresholded image ............................................................................ 17 

4.3 Handling and  tracking objects ....................................................................................... 19 

4.4 Transmitting useful information via network ................................................................. 23 

5. Using the application on Raspberry Pi ................................................................................. 26 

6. Ideas for further development............................................................................................... 29 

Conclusions .............................................................................................................................. 31 

Kokkuvõte ................................................................................................................................ 32 

Bibliography ............................................................................................................................. 33 

Appendix 1 ............................................................................................................................... 35 

 

 



7 

1. Introduction 

1.1 Background 

Computer vision and visual detection of features and colours has been always been an area of 

interest for large companies able to invest in expensive high-end technology and machinery, 

but with the advent of cheap, mass-produced credit-card sized computers such as the Raspberry 

Pi. 

The Pi microcoputer was created for the sole purpose of commercial and academical use and 

anyone in the world with enough enthusiasm and eagerness to learn can develop software and 

even whole embedded real-time systems, that with modern hardware specifications is very 

capable of image processing. 

The applications of any sort of feature detection software or computer vision in general are 

numerous. To provide a few examples: guest tracking at shopping centres, surveillance systems 

with facial recognition, monitoring any sort of equipment, helping robots navigate and pick up 

objects, inspecting labels on products in factories, deep learning projects and a lot more. 

The motivation behind this Bachelor’s Thesis is to form a foundation of knowledge regarding 

embedded systems, the basics of real-time image processing and visual detection of objects (or 

other features), upon which it is possible to add deeper layers of complexity and conduct further 

research with which to formulate projects ranging from inexpensive and small real-time systems 

for simple object detection or facial recognition to more complex systems such as self-learning 

robots and intelligent machines with the capability of visual feedback. 

 

 

 

  



8 

1.2 Aim of thesis 

The primary aim is to write a C/C++ application, with the help of OpenCV libraries, which can 

be used on an embedded UNIX-based system, specifically a Raspberry Pi to: 

1) Detect coloured blobs from live camera feed, 

2) Assuming these blobs are objects (certain criteria are met), store them in memory to 

keep track of their coordinates and other properties, 

3) Attempt to ensure realistic and linear movement of these objects, 

4) Send useful information about these objects is continuously as datagrams (using 

network sockets bound with the UDP protocol) to any software making information 

requests. 

1.3 Thesis outline 

In Chapter 2 the reader is provided a description of the used platform, Raspberry Pi, and general 

guidelines for setting it up for work. 

In Chapter 3 the OpenCV library and the HSV colour space are introduced, while the latter is 

explained in more detail, as it is the foundation on which colour-based object detection is built. 

Chapter 4 describes the workflow of the created application and explains why and how OpenCV 

and C++ solutions were used. 

Chapter 5 provides information on how the application can be used on a Raspberry Pi, as well 

as explains how and why command line arguments or the developed application’s control panel 

should be used. 

In Chapter 6 some ideas for further research and improvement are discussed, such as object 

handling and tracking algorithms, GPU acceleration, user interface features. 

  



9 

2. Raspberry Pi 

Taking into account the relatively high performance requirements of image processing in 

general and the equipment currently available to the faculty, as a relatively inexpensive and 

powerful embedded platform the Raspberry Pi was an obvious choice. The hardware 

specifications taken into consideration for this work can be seen in Table 1. 

          Table 1. RPi hardware specifications [1], [2] 

SoC Broadcom BCM2835 

CPU 700MHz ARM11 ARM1176JZF-S core. Can be 

overclocked safely. 

GPU Broadcom VideoCore IV, OpenGL ES 2.0, OpenVG 

1080p30 H.264 high-profile encode/decode 

Memory (SDRAM) 512Mib 

USB 2.0 ports 2 (via integrated USB hub) 

Video outputs Composite RCA, HDMI (cannot be used simultaneously) 

Video input CSI 

Audio outputs TRS connector / 3.5mm jack, HDMI 

Onboard storage SD / MMC / SDIO card slot 

Onboard network 10/100 wired Ethernet RJ45 

Low-level peripherals 26 GPIO pins, SPI,  I²C, I²S, UART 

Power ratings / source 700 mA, (3.5 W) / 5V (DC) via Micro USB type B or GPIO 

Size / weight 85.0 x 56.0 x 17 [mm] / 40g 

 

Another contributing factor to this choice was the availability of the Pi camera module, which 

can capture high-definition video as well as stills and requires the user to simply update 

Raspberry’s firmware to the latest version. It can easily be used in OpenCV based applications. 

Although using the officially supported camera module, which can be accessed through the 

MMAL and V4L APIs and is supported by numerous third-party libraries, any USB web-

camera can be used. 

 

Figure 1. RPi model B and CSI camera module 



10 

2.1 Setting up the Raspberry Pi for work 

The choice in how to proceed with working with a Raspberry Pi is up to the developer, although 

it should be mentioned that while remote access is fairly convenient to use and simple to set up 

with a wireless internet USB dongle, image processing applications, even displaying live 

camera feed, require a lot of CPU processing power and therefore it is best if some of it can be 

spared by simply connecting the Pi to a monitor and wireless mouse and/or keyboard. 

On the other hand, after remote access is properly configured and working, it can be used to 

install various updates, upgrades and most definitely OpenCV, which takes up to 10 hours to 

make (install) after downloading and unpacking and is best left to itself overnight [3], [4]. 

While coding can be done in numerous ways and it is entirely up to the programmer to decide 

which IDE and compiler should be used; a good way to save time is to write code on a personal 

computer and compile it on the Raspberry, because while Raspberry is pretty powerful for such 

a small computer, it is much more convenient to write code on a smoothly operating machine. 

Overclocking 

The easiest way to overclock the Raspberry Pi model B is to do it via Raspberry’s configuration 

interface, which appears on every start-up, or can be opened using the command sudo raspi-

config, which brings up a menu for various configuration possibilities as seen in Figure 2. 

 

Figure 2. sudo raspi-config 

  



11 

Overclocking is recommended since image processing operations consume fairly large amounts 

of CPU power (if not optimized to harness the GPU instead) and if the Raspberry’s airflow is 

above minimal (heat disperses easily), it will not damage the SoC. 

The only problems that may arise are unstability when remotely accessing the Pi on which a 

graphical user interface server is running. In that case, the Raspberry quickly shuts down all 

access via network and can even freeze completely. 

This means that a less powerful overclocking preset should be preferred to ensure stable 

execution of any application relying heavily on the CPU. 

 

Figure 3. Raspi-config overclocking presets 

 

All presets up to High were tried using TightVNC as a GUI server for remote access through 

Windows, so stability problems may have arisen from this (TightVNC also consumes a lot of 

CPU power since it draws the whole desktop and every open window), but the most satisfying 

workflow was achieved with a simple 100MHz boost (Figure 3), while anything higher than 

that caused freezes and disconnections too often, or simply did not provide a tangible 

improvement to performance. 

 



12 

3. OpenCV introduction 

The application written for this thesis relies heavily on computer vision, image processing and 

pixel manipulation, for which there exists an open source library named OpenCV (Open Source 

Computer Vision Library), consisting of more than 2500 optimized algorithms. Uses range from 

facial recognition, object identifying, classifications of human actions in videos, achieved with 

filters, edge mapping, image transformations, detailed feature analysis and more (Figure 4). 

Having Linux support, this is the perfect choice for developing an application specifically for a 

Raspberry Pi based system. Another positive aspect of this library is that it’s written natively 

in C++ and therefore can be very smoothly implemented in a C/C++ application [5]. 

 

Figure 4. Partial overview of what OpenCV includes [6] 

 

While there are numerous methods and algorithms contained within OpenCV, the most 

important benefit of this library for the purposes of this thesis are its basic data structures like 

Mat, which can be used to store pixel values of an image in an n-dimensional array, Scalar and 

Point, which respectively contain pixel values and coordinates of up to 3 dimensions [7]. 

The functions provided by this library are also necessary in the development process of the 

object tracking application. There are numerous options, but following the scope of this thesis, 

the focus is set on grabbing frames from a live camera feed [8], image thresholding using HSV 

colour space ranges, finding blobs and using their detected contours in a binary image and, in 

case a graphical user interface is enabled, displaying of image frames and a control panel for 

changing parameters during run-time. 



13 

Table 2. OpenCV functions most relevant to colour-based object detection, used in the code 

of the C++ application created for the thesis. 

Function name Library Short description 

inRange core 

Checks if an image’s pixel array elements lie between the 

elements of two other arrays (lower and upper 

boundaries) and thresholds them accordingly to either 

black or white [10]. Usage in code seen in Listing 3 of 

Appendix 1. 

Circle core 

Draws a circle. This function needs a destination image 

and the drawn circle is described with a coordinate 

marking the centerpoint, a radius value, colour of the 

circle and the thickness of its outline. 

cvCreateTrackbar highgui 

Creates a trackbar (a slider) which can be used to control 

parameters during run-time. Can be used instead of 

buttons, because the latter have not yet been 

implemented. 

imshow highgui Displays an image frame. 

cvtColor imgproc 

Convert an image frame (pixel array) into another format. 

In this project it is used to convert each frame grabbed 

from the camera feed from BGR to HSV [9]. 

GaussianBlur imgproc Blurs an image using a Gaussian filter. 

moments imgproc 
Calculates all of the moments up to the third order of a 

polygon or rasterized shape [16]. 

findContours imgproc 

Finds contours of all possible areas in a binary image and 

stores them in an allocated vector of points (the outermost 

pixels of white areas). Usage of function is seen in 

Listing 4 of Appendix 1. 

contourArea imgproc 
Takes in a vector of points forming a contour for a region 

and calculates it’s area value (amount of pixels). 

erode imgproc 

Used on a binary image this function enlarges the area 

covered by black pixels, effectively removing most noise 

(random single white pixels) from the image [11]. 

dilate imgproc 

Used on a binary image after erode to enlarge white pixel 

areas, making any (relatively) large enough areas to 

return to their original size. 

 



14 

3.1 HSV colour space 

The HSV colour space consists of three different descriptors, which is always the minimum 

number to classify a colour, first of which is hue that describes a colour that the human eye can 

see. The second is saturation, which describes the purity of a colour or, in computer vision, 

how much that respective colour is mixed with white and third is value (or luminosity, 

brightness), which on the contrary represents the magnitude of black in said colour. Therefore 

if a pixel’s saturation is high, it looks more rich, while a low saturation looks dull. A colour 

with a low value appear darker or simply black [12], [13]. 

 

Figure 5. HSV colour cylinder [14] 

 

The reason for using the HSV pixel format here instead of RGB, is because the HSV colour 

space separates color information (saturation) from light intensity (value). When ignoring value 

in the thresholding parameters, it is still possible to detect any colour from an image, given the 

right hue and saturation values. Another important characteristic is the circular progression 

(Figure 5) of hue values for different colours, which means that the highest hue value (179 in 

OpenCV to fit into an unsigned char) is simultaneously the lowest, because the space is circular 

not linear, and should be kept in mind when using image thresholding algorithms in an 

OpenCV-based application. 

  



15 

4. Development of the application 

Capturing video with the camera module 

Capturing video straight from the Raspberry Pi camera module is simple with OpenCV and at 

this point does not require any additional drivers or other software. 

Videocapture is simply initialized by calling the VideoCapture class and assigning it a name. 

The class copy can then be used to grab frames from the camera at the start of each loop, given 

that the loop is executed multiple times (it is an endless loop). After initializing the camera, it 

is recommended to check whether or not it actually succeeded. This can be done with a simple 

IF statement, because the defined VideoCapture instance will have a function isOpened, which 

returns true if the camera is running. Video capturing settings can be changed within code. 

When writing a program that displays any graphical items, or more specifically, displays any 

constantly changing images, the endless loop must include a delay to save enough time to 

process any draw requests (e.g. displaying an image) and for this OpenCV has the waitKey 

function, which also checks if the user pressed the key specified (Listing 1 of Appendix 1) [15]. 

Creating a control panel 

Creating a program that deals with image 

processing and not including at least something 

like a graphical user interface is nonsensical, 

because the environments, in which this sort of 

system works, can change a lot during run-time. 

For example, when not using it inside a room 

with constant illumination (outside), parameters 

first entered by the user may become obsolete 

since computers are a lot more sensitive to pixel 

values than human eyes. 

Therefore a convenient feature of OpenCV 

would be its built-in trackbars (Table 2), which 

can be added to a control panel window and used 

to change various values during run-time (see 

Listing 2 of Appendix 1). 

 

Figure 6. Example of a control panel 

created using cvCreateTrackbar 



16 

4.1 Preparing captured image for object detection 

The first step towards making the image easily readable is converting the image into the HSV 

colour space, which is much easier to threshold (Table 2. cvtColor). 

The second step is thresholding, which in this case is simply iterating through a pixel array of 

the captured image containing HSV values and setting the values of those pixels to 0 if the their 

values are below a lower boundary or 255 when the values are above a provided higher 

boundary, effectively creating a binary image. The boundaries are specified by scalars 

containing the currently set boundaries of hue, saturation and value. 

 𝒅𝒔𝒕 (𝑰) = 𝒍𝒐𝒘𝒆𝒓𝒃 ≤ 𝒔𝒓𝒄(𝑰)𝒉𝒖𝒆 ≤ 𝒖𝒑𝒑𝒆𝒓𝒃 ∩ 

∩ 𝒍𝒐𝒘𝒆𝒓𝒃 ≤ 𝒔𝒓𝒄(𝑰)𝒔𝒂𝒕 ≤ 𝒖𝒑𝒑𝒆𝒓𝒃 ∩ 

∩ 𝒍𝒐𝒘𝒆𝒓𝒃 ≤ 𝒔𝒓𝒄(𝑰)𝒗𝒂𝒍 ≤ 𝒖𝒑𝒑𝒆𝒓𝒃, 

where dst is the current pixel on the destination frame (where the binary image will be stored) 

which will store the result of this equation (1 for white or 0 for black), lowerb and upperb are 

scalars containing set HSV ranges and src is the current pixel on the image frame grabbed from 

camera [10]. 

This binary image can then be read and analyzed by contour finding algorithms, thus allowing 

the program to count objects. 

 

Figure 7. Image after thresholding. The selected hue range in this case was between 0 and 38, 

which is roughly orange or yellow (colour of door on image). The lower boundary of 

saturation was also raised to accommodate current lighting conditions. 



17 

The third step, erosion and dilation (Table 2), is optional because the application at hand already 

uses conditional checking of area values to determine whether a region is large or small enough 

to be considered an object. It can still be useful, when using other methods of object detection, 

although it does slow down the process, especially when using larger kernels. 

Source code for steps 1, 2 and 3 of this section are provided in Listing 3 of Appendix 1. 

 

Figure 8. Binary image after erode and dilate 

4.2 Finding objects on thresholded image 

After thresholding the captured image into a binary image, the program can begin looking for 

blobs – white pixel regions - and storing them in memory if they qualify as objects. For finding  

said regions OpenCV libraries have a function named findContours. 

To use findContours, the thresholded image should first be converted into an 8-bit single-

channel image (while HSV or RGB images have three 8-bit channels). While the conversion is 

not essential, a buffer image should be created nonetheless, to avoid any unwanted alterations, 

because the reference manual states that the source image will be modified [17]. 

Next, the program searches the image for contours, which are basically vectors of points that 

form a sequence of points surrounding a single colour area. 

In the case of curved objects (e.g. circular), these vectors will contain large amounts of points, 

as to create an illusion of smooth shapes, while at the same time the function also modifies the 

source image so that less points need to be acquired. Controversely, when finding the contour 



18 

of a rectangular object, only four points are required (one for each corner), since a straight line 

can be drawn from one to another, ultimately forming a rectangle. 

 

Figure 9. Illustrative contour points of a semi-circle and a strictly rectangular object 

 

After gathering information about all the blobs on the image, the program can then calculate 

area size (Table 2. contourArea) and central coordinates (see Listing 4 of Appendix 1) for the 

areas within each contour. 

It should be noted that these contour-bound areas are only considered objects if their area value 

surpasses the default or user-defined minimum values and remains below the maximum. If the 

user has not specified this at execution time, the default object size boundaries are calculated 

so that the image could ideally (side by side) fit 100 of the smallest objects or 4 of the largest 

objects. For example, with a default videocapture image size (256x256), the smallest objects 

must contain at least 656 pixels and the largest can contain up to 16,384. 

While calculating the coordinates of each object, that object is also pushed to a vector of found 

objects, which will be used to compare the vector of existing objects and the vector of recently 

discovered objects. 

An object has several properties (as seen in Table 3), including coordinates, area value and 

removal and life counters, currently tracked HSV ranges and is therefore defined as a C struct 

- each new object is an instance of that struct.  



19 

4.3 Handling and  tracking objects 

Storing objects in memory is implemented so that the application has a general idea of what 

describes an object in this scope, as is common in object-oriented programming. There are two 

possible ways this can be done: creating either a C class or a struct. Because the main difference 

between these two is default access levels, struct was chosen as its members’ default access 

level is public, to avoid any unnecessary problems. 

The instances of this structure are essentially the objects which the program will be handling. 

From the creation of these copies up to the removal or drawing of markers and transmitting 

information, the objects go through three phases (illustrated in Figure 10): 

1) An instance of the object struct is created after finding contours and their characteristics. 

The created object is then pushed into the vector holding all the objects found during 

this cycle. It is therefore considered a found object. 

2) The vector of found objects is then compared with another vector (holding existing 

objects) and any unique objects are pushed to the latter. The elements of this target 

vector are therefore considered to be potentially existing objects. 

3) After counter values have been taken into account and non-existing objects are dropped, 

those with a high enough life value have achieved existing status. These are the only 

objects that can be marked on the original image and whose information can be 

transmitted via network. These objects can still be removed when their removal counters 

reach zero. 

 

Figure 10. Three levels of object existence described using counters as criteria 

 

 

 



20 

Table 3. Description of the Object struct (C struct seen in Listing 12 of Appendix 1) 

Member variable 

name 

Description 

Index 

Stores an index given to a newly created object at the 

point of confirmation as an new object. Default value 

for all objects is 0. 

X 
Location of the object’s centroid in relation to the X 

axis of the image frame. 

Y 
Location of the object’s centroid in relation to the Y 

axis of the image frame. 

Area 

Amount of pixels in a found blob. This can be set to 

retain its value even when an object moves (as 

otherwise it will rarely remain the same). 

Removal counter 

Given a starting value specified by the user or a set 

default value (5). When this reaches zero, the object will 

be removed. This counter is only decreased. 

Life counter 

Value assignment process is the same as for the removal 

counter. Markers are drawn on the original image and 

information is transmitted via UDP only when this 

reaches a set value (10). This counter is only increased. 

Coordinate margin 

Margins for coordinate areas in which another object is 

compared within. This is calculated at the creation of 

the object using the object’s Area value. 

Tracked colour 

This can be either an array of values or can be multiple 

variables containing the lower and upper boundaries of 

the tracked colour range. 

 

 

 

 

 

 

 



21 

Confirmation of found objects and placing them alongside existing objects 

After objects are found and pushed into the found objects vector [20], they are compared to the 

existing objects. There are various ways of deciding if an object is indeed new or if it already 

exists, but in this case basic coordinate comparison is used. 

If a found object’s coordinates are too similar to an existing object’s coordinates (defined by 

coordinate margins), this new object is dropped and not added to the vector of existing objects, 

while its coordinates are applied (if not specified otherwise by the user) to the existing one, 

allowing existing objects to move. This can be disabled if the user desires the objects to be more 

static. 

The coordinate margins used in comparing objects with each other is calculated as if every 

object is a circle, which allows the program to easily find it’s diameter, derived from its area 

value, and therefore the radius, which is then used as a coordinate margin within which a 

different object can not exist. 

Source code of this function displayed in Listing 5 of Appendix 1. 

Conditional checks of the existence of objects 

After new objects have been added next to already existing ones, the program goes over both 

object vectors once more to decide which objects are (potentially) no longer existing and which 

are definitely still seen on the image. To do this, the program first iterates through existing 

objects again and checks if they are located inside the areas of any of the newly found objects. 

When this conditional check returns a positive value, the object’s life counter is increased, as if 

it has existed for one more cycle. If the object at hand does not fit into the margins of any of 

the newly found objects’ coordinates, it might not exist anymore, therefore its removal counter 

is decreased. 

These aforementioned removal and life counters are used when either drawing markers where 

found objects are on the original image frame, or removing them during the next phase of the 

program, which deals with the removal of non-existing objects (those with corresponding 

counters at zero). 

Code example shown in Listing 6 of Appendix 1. 



22 

Cleaning up after itself 

After the increasing and/or decreasing of counters has been handled, it is time for the program 

to clean up after itself. This is simply done by iterating through the whole vector of existing 

objects and removing any objects that have a removal counter value of zero. 

This is currently implemented only to save memory, but in case of a system, where all objects 

should be stored in memory for longer periods of time, this could prove to be a very unnecessary 

feature. Source code found in Listing 7 of Appendix 1. 

Drawing markers on the original frame (if displayed) 

The final function that takes place during the main process cycle is the drawing of markers on 

the original frame, if the user has not specified otherwise. 

This is where life counters are utilized (not exclusively), as only objects with this counter’s 

value over a specified amount (which is higher than the removal counter, by default) get their 

centroids and area-equivalent red circles drawn on the live camera feed (example shown in 

Figure 11). This is mainly for aesthetic purposes, but can be used to check if the user has 

provided correct parameters (e.g. correct HSV range). 

The red circles are drawn using the function Circle (Table 2), which takes coordinates and a 

radius, and uses them to draw a circular line. The radius here is calculated using the object’s 

stored size and treating it as if it were a perfect circle, even if in reality it’s a rectangular object. 

 

Figure 11. Drawing markers on detected objects. Function seen in Listing 8 of Appendix 1 



23 

4.4 Transmitting useful information via network 

This section deals with acquiring useful information from existing objects and writing them in 

an easily read and parsed format to a buffer string, which is then broadcasted via a network 

socket using the UDP protocol. Client applications can request this information by providing a 

proper host name (IP address), port number and a matching passphrase of up to 64 bytes. Both 

information and passphrase datagram size limits are not pre-defined and can be chosen by the 

programmer. 

On server side, in this case the Raspberry, using datagram communication involves: 

1) Creating a network socket with the socket function, which takes 3 arguments, and 

binding the socket to its address [18], [19]. 

The first argument is address domain of the socket, which, for the sake of possible cross-

platform communication, is set to AF_INET. The other option would be AF_UNIX, 

which is a domain reserved for two processes that share a common file system. 

The second argument is the socket’s type. Because the given application uses small 

messages or datagrams to send to a querying client, the datagram socket type is used 

(SOCK_DGRAM). 

The third argument is the protocol, which is left as zero, so the operating system will 

choose the most appropriate protocol. For datagram sockets, UDP will be used. 

An example, also used in the created program, of creating and binding a socket on Linux 

is seen in Listing 10 of Appendix 1 (SetupSocket). 

  



24 

2) Writing useful information about existing objects into a datagram buffer. 

This part is mainly standard C++ string operations like strncat and strcpy [20] and 

focuses on converting useful values of existing objects like their indexes, coordinates 

and area into string format and appending them into the datagram buffer. The datagram 

also includes a timestamp (consisting of only daytime) and the total amount of objects. 

Each different value is preceded by delimiters, for example in the case of the object’s 

index, the actual value is preceded by <i>. The format or the identifiers used is entirely 

up to the developer, while the delimiters must include symbols that would never appear 

in the actual values being written into the buffer, as to make reading them less complex 

on the receiving side. 

 

Figure 12. Examples of datagram buffer format 

 

The source code for the function that is used to append information into a buffer variable is 

shown in Listing 9 of Appendix 1. 

 

 

 

 



25 

3) Receiving and sending datagrams via the network socket [18], [19].  

Sending and receiving datagrams after the program is bound to a network socket is a 

simple receive-send sequence. 

First, a message is received from the socket and stored in the passphrase buffer. This is 

the message that a client application has sent via the same socket (that they have bound 

to as well on their side), using the function recvfrom(). As the flag (fourth) argument 

for this function, it is recommended to specify the flag MSG_DONTWAIT, because 

otherwise the whole program will halt at this point, until a message is received from 

client software. Without that flag, the program can only properly function if there is 

another application constantly sending messages to this one [21]. This function also 

stores the sender address in memory for use in returning a message. 

After receiving a correct passphrase, which is checked by comparing the received 

datagram and the required passphrase specified server side, the program sends back 

whatever is in the datagram buffer, which was filled in the previous function. 

The function used for sending and receiving datagrams via network sockets in this 

application is presented in Listing 10 of Appendix 1 (RecvSend). 

 

Description of simple UNIX C application for requesting information from Raspberry. 
 

While much can be done with the information transmitted by the object detection program, for 

example redrawing the objects on the client machine or any number of parsing operations, a 

simple send-receive-print program has been written for the purpose of presenting an example 

(Listing 11 of Appendix 1). 

  



26 

5. Using the application on Raspberry Pi 

The application can be run on a Linux operating system, in this case a Raspberry Pi Linux 

distribution (Debian Wheezy). It is preferrably run from command line and can be provided 

parameters by the user (currently implemented arguments described in Table 4). It is 

recommended the user try using the application without any parameters first to get a glimpse 

of how these settings change what the program is doing, especially using the colour range 

sliders. 

Using the application 

The first step for the user is to check whether or not the camera is facing whatever direction 

should be scanned for objects. 

Next, the colour ranges must be set correctly to separate a certain colour (range) from the rest 

of the image. This is done via thresholding and the resulting binary image can be displayed 

when enabled by the user on the control panel. The contours for the white pixel regions on the 

thresholded image will then be found. 

After the colour ranges are set and seem to be consistent enough, the colour ranges can be 

written down for re-use (or if such a method is implemented in the code, saved into a 

configuration file) and the any unnecessary windows can be disabled. 

Note that trying to close continously displayed images such as the original camera feed and the 

thresholded image via clicking on the exit button will not work, except for the case of the control 

panel window, as they are redrawn each cycle, which is generally around 40-150 milliseconds. 

Next, if counting objects is enabled, information will be written into the datagram buffer and 

red circle markers with roughly the same area value of the objects will be drawn on the original 

image. 

In the program written for this thesis, another feature is included: debug level (seen added to 

the control panel in Listing 2 of Appendix 1). This is used to see what is currently being written 

into the datagram buffer, that will be sent to any querying software, and what the current state 

of objects is (all parameters of each object in the existing objects vector are displayed, including 

life and removal counters). Note that only the objects that have lived for sufficient cycles will 

be considered existing objects and the rest will be removed promptly. 



27 

Approximate colour ranges 

Choosing a corresponding HSV range is an integral part of using the created object detection 

application. If the user does not know what the values on the control panel mean or how to 

select the desired range, a demonstrative image of hue progression can be displayed. 

The drawning of such an image is provided in Listing 13 of Appendix 1, although the image 

drawn by this function does not currently include a scale for these values. This function could 

theoretically be used for creating a section of the graphical user interface, which would allow 

selecting the tracked range from a visible colour range instead of a slider (Figure 6). 

 

Figure 13. Hue values as a range from 0 to 179. The numbers are rough estimations as to where 

one colour ends and another starts, while the „pipe“ represents its continuous nature, which 

means that if the lower boundary is set to be higher than the upper boundary on the trackbar, 

the range will not end at 179, but rather progresses through 0. 

It should also be noted that while hue is essentially separated from saturation and value, in 

most cases either of the latter two also need to be to achieve satisfactory colour separation, 

because of imperfections in the captured image and the difference between how a computer 

and the human brain interpret a certain colour. 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

Table 4. Command line arguments, which can be passed to the program. Settings specified in 

this manner will override the application’s default settings. 

Argument Parameters Use result 

-hue L H 
L – low 

H – high 
Set low and high boundaries for hue. 

-sat L H 
L – low 

H – high 

Set low and high boundaries for saturation (colour 

intensity). 

-val L H 
L – low 

H – high 

Set low and high boundaries for value (light 

intensity). 

-objsize MIN MAX 
MIN – minimum size 

MAX – maximum size 

Set minimum and maximum size of objects to be 

considered. 

-capsize H W 
H – height 

W – width 
Set height and width of captured frames in pixels. 

-framesize H W 
H – height 

W - width 

Set height and width of resized images for display. 

This can be different from capture size and should be 

set smaller, because drawing windows puts a heavy 

load on Raspberry’s CPU. Does NOT affect object 

detection. 

-nogui None 

Disables graphical user interface. Only 

recommended for use in synergy with properly 

entered command-line parameters. Reduces CPU 

load significantly. 

-morph X X – [0..2] Sets morphological filtering level. 

-noblur None 

Disables applying gaussian blur when thresholding 

image. This will result in more noise in the resulting 

image. 

-nocount None 
Disables all object detection- and counting-related 

features. 

-udppass [string] 64 byte word 
Sets the passphrase which client software must use to 

query information from Raspberry. 

-udpport X X – [2000.. 65535] Sets port on which information is broadcast. 

-rmstart X X – [..] Set starting removal counter to provided value. 

-drawmin X X – [..] 
Set minimum lifetime required for objects to be 

marked on the original frame. 

-debug X X – [0..10] 

Set debug level. Can be used to print information to 

the console, such as the contents of the string buffer 

sent via UDP or all objects and their life and removal 

counters. 

-help None 
Display all possible arguments and their entering 

formats. 

 



29 

6. Ideas for further development  

Multiple colour ranges 

The first idea, which is not really a different method but an extenstion of what is already 

implemented, was to have multiple simultaneous colour ranges used to threshold multiple 

binary images, which would then be thrown to the contour finding algorithm. This would 

provide the application the capability to look for various differently coloured objects and would 

come in handy when trying to detect objects of colours that are not next to each other (e.g. blue 

and orange). 

Implementing this would require the use of similar methods as seen in the current object 

detection and tracking functions, but could be extremely CPU-intensive, which a Raspberry Pi 

might not be able to handle, but could provide more flexibility to a colour-based object detection 

program. 

GPU accelerated source code 

Another possibility, which came into question during the very beginning of this project, is GPU 

acceleration/optimization of C++ code for OpenCV projects. This would increase the 

performance of image processing tasks dramatically [22], since the current framerate is abysmal 

with larger capture and display sizes and extremely high CPU loads (over 99%) can cause the 

Raspberry Pi to freeze and prevent remote access from the network, which can prevent smooth 

testing of the application being developed, because in that case the Pi needs to be hard-reset. 

Object detection and handling algorithms 

Considering the current application’s object handling code, much can be added and improved, 

such as better algorithms for tracking objects not using only coordinate margins – the current 

version works most of the time, but it can be fooled by objects hiding behind each other, for 

example. There is a possible solution to this in the segmentation of overlapping objects, which 

can include the use of OpenCV watershed algorithm [23], [24] or various other available and 

well-documented methods [25], [26]. Since colour-based detection has its limits, an approach 

combining colours, segmentation and especially algorithms for finding corners, which are 

essentially areas of pixels, where there are texture or edges going in at least two separate 

directions [25], would be the end-goal of a fully developed, functional, maintainable and cost-

effective object detection and tracking system. 



30 

User interface features 

An earlier version of the current application included the functionality to click on the original 

image window to select a colour range instead of dragging trackbars in the control panel. This 

worked using an OpenCV function, SetMouseCallback, which read cursor actions and passed 

the selected coordinates to another function, which in turn iterated through a patch of pixels 

around the provided coordinates, averaged together the area’s colour range and changed the 

values concerning hue, saturation and value (both lower and upper boundaries). This 

functionality was dropped after running into conflict with access permissions within the 

ColourTracking class and was deemed more of a convenience than a necessity. 

Selecting the HSV range via clicking on the image and many other possibilities, such as 

selecting specific areas of a frame within which to count objects or at the very least displaying 

coordinates when the cursor is hovering over a frame, would arise if this functionality was 

reimplemented and/or developed further. 

Another helpful tool to implement would be a HSV based colour wheel, from which the user 

can click and drag over certain areas to define ranges. This would be much more intuitive than 

adjusting sliders on a linear range and would be more descriptive of the abstract cylindrical 

shape of the HSV range. 

Histogram based self-calibration of tracked ranges 

OpenCV features functionality to calculate the histogram of a frame, which are essentially 

collected counts of data organized into a set of predefined bins (a sub-range of values, for 

example all hues that appear as green, or all values that describe dark or bright colours, even 

gradients and directions) [27]. This information could be used to calculate the average 

illumination of an image, compared to previous, different values and automatically calibrate 

thresholding ranges accordingly, therefore providing more adaptive and consistent results when 

the application is used outside (daylight varies a lot, especially regarding pixel values). 

 



31 

Conclusions 

Identifying objects via filtering of colours (pixel HSV values) is only one of many different 

methods that can be used for such a system. Colour-based object detection using colours is 

definitely an effective method, especially when dealing with objects that generally have no 

constant distinguishable features or corners. Such objects can be balloons and other round 

coloured objects, or even spots of paint, to provide a few examples. 

The main problem with using colours, or more accurately, pixel values, for this purpose is the 

effects of inconsistent lighting, which a computer can be very sensitive towards, while a human 

eye can only detect a slight difference. The main cause of this problem is computers’ lack of an 

inherent learning ability, which prevents adapting to new conditions such as a spike in the 

amount of yellow and white pixels on an image due to natural (varying amounts of daylight) 

and/or synthetic lights (flickering).  

Considering the aim of this thesis was to create a practical C/C++ application for use in a 

Raspberry Pi based system that detects objects depending on their colour and attempts to ensure 

linear and realistic movement tracking, the results are satisfactory enough, while the existing 

code can and should be optimized further, using a wider array of different functions available 

in either OpenCV or C++ standard libraries, as well as improved style-wise, towards using more 

consistent standards and practices of programming in C++. 

The realization of communication via UDP is, while currently basic in terms of security and 

usage, successfully implemented in the source code. Albeit being functional, it would probably 

be wise to separate the module at hand from the rest of the application, so it could be used in 

parallel with the main program while maintaining a certain level of independence on both sides. 

Another improvement worth mentioning would be the controlling of the application remotely, 

which would require to the program to be able to discern control words from the passphrase, 

similarly to how command line arguments are parsed. 

OpenCV and C++ both have vast libraries, with seemingly endless possibilities regarding visual 

operations, image processing, handling memory and much else. Therefore it is quite necessary 

to conduct further research in this area. While the currently developed application has been 

realized according to the expectations set at the beginning of this work, a wider (or more 

specific) understanding of the used tools is required to create flawless and profitable real-time 

systems that require object detection and tracking. 



32 

Kokkuvõte 

Objektide identifitseerimine värvide (pikslite HSV väärtuste) järgi on kõigest üks meetoditest, 

mida saab taolise süsteemi puhul rakendada. Värvide järgi objektide tuvastamine on 

kahtlemata efektiivne meetod, eriti objektide puhul, millel pole püsivaid või eristatavaid 

omadusi või nurkasi. Sellised objektid võivad olla näiteks õhupallid või muud värvilised 

ümarad asjad, isegi värviplekid mingil pinnasel. 

Põhiline probleem värvieristuse puhul antud eesmärgil on ebaühtlase valgustuse mõjud, mille 

suhtes võib arvuti väga tundlik olla, samal ajal kui inimestel võivad väiksemad muutused 

jääda kahe silma vahele. Selle probleemi üks olulisemaid põhjuseid on arvutite õppimisvõime 

puudumine, mistõttu ei pruugi selline süsteem suuta adapteeruda uute tingimustega, näiteks 

päikese või sünteetilise valguse poolt põhjustatud järsu värvide muutusega kogu pildil. 

Võttes arvesse sissejuhatuses püstitatud eesmärki luua Raspberry Pi-le C/C++ keeles 

rakendus, mis tuvastaks värvi järgi objekte ning üritaks tagada leitud objektide lineaarne ning 

realistlik liikumine, võib töö tulemusega piisavalt rahul olla. Siiski on ilmne, et olemasolevat 

lähtekoodi on vaja edasi arendada, kasutades rohkem nii OpenCV kui ka C++ standardteekide 

poolt pakutavaid lahendusi ning parandades koodistiili vastavalt levinumatele 

programmeerimisstandarditele ning headele tavadele. 

Andmete edastamise UDP protokolli teel, olles turvalisuse ning rakenduslikkuse poole pealt 

antud juhul algeline, on loodud rakenduses edukalt implementeeritud. Tõenäoliselt oleks 

mõistlik antud moodul eraldada ülejäänud programmist nii, et seda saaks kasutada 

paralleelselt põhirakendusega, samal ajal säilitades mõlema mooduli iseseisvust. Veel üks 

mainimist väärt täiustus oleks programmi kaugjuhtimise implementatsioon, mille puhul peaks 

rakendus suutma saadetud sõnumis eristada parooli ning kontrollsõnu (ja nende 

parameetreid), sarnaselt käsurealt sisestatud argumentide lugemisele. 

C++ ning OpenCV on mõlemad massiivsed teegikogumikud (üks rohkem kui teine) ning 

sisaldavad üüratult palju võimalusi visuaalseteks operatsioonideks, pilditöötluseks, 

mäluhalduseks ning paljukski muuks. Antud teema vajab süvitsi uurimist, et jõuda parema 

arusaamiseni kasutatud tööriistadest, misläbi oleks võimalik luua efektiivsemaid ning reaalselt 

rakendatavaid süsteeme objektide visuaalseks reaalajas tuvastamiseks ning jälgimiseks. 



33 

Bibliography 

[1] RPi Hardware. [WWW] http://elinux.org/RPi_Hardware (16.03.2015) 

[2] Frequently Asked Questions. [WWW] https://www.raspberrypi.org/help/faqs/ 

(16.03.2015) 

[3] OpenCV Installation in Linux. [WWW] 

http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html#linux-

installation (16.03.2015) 

[4] Installing OpenCV on a Raspberry Pi [WWW] http://robertcastle.com/2014/02/installing-

opencv-on-a-raspberry-pi/ (17.03.2015) 

[5] OpenCV About. [WWW] http://opencv.org/about.html (16.03.2015) 

[6] Coombs, J., Prabhu, R. OpenCV on TI’s DSP+ARM platforms: Mitigating the challenges 

of porting OpenCV to embedded platforms. [WWW] http://www.embedded-

vision.com/platinum-members/texas-instruments/embedded-vision-

training/documents/pages/opencv-ti%E2%80%99s-dsparm%C2%AE-plat (21.05.2015) 

[7] OpenCV API Reference : Basic Structures. [WWW] 

http://docs.opencv.org/modules/core/doc/basic_structures.html (18.03.2015) 

[8] OpenCV API Reference : Reading and Writing Images and Video [WWW] 

http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#vi

deocapture (19.03.2015) 

[9] OpenCV API Reference : Miscellaneous Image Transformations [WWW] 

http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor 

(20.03.2015) 

[10] OpenCV API Reference : Operations on Arrays [WWW] 

http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#inrange (20.03.2015) 

[11] OpenCV API Reference : Image Filtering [WWW] 

http://docs.opencv.org/modules/imgproc/doc/filtering.html#erode (21.03.2015) 

[12] Hue, Saturation & Value. The Characteristics of Color [WWW] 

http://www.greatreality.com/color/ColorHVC.htm (24.03.2015) 

[13] Color Detection & Object Tracking [WWW] http://opencv-

srf.blogspot.com/2010/09/object-detection-using-color-seperation.html (16.03.2015) 

[14] HSL and HSV [WWW] http://en.wikipedia.org/wiki/HSL_and_HSV (16.05.2015) 

[15] OpenCV API Reference : User Interface [WWW] 

http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=waitkey#waitkey 

(18.03.2015) 

 

http://elinux.org/RPi_Hardware
https://www.raspberrypi.org/help/faqs/
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html#linux-installation
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html#linux-installation
http://robertcastle.com/2014/02/installing-opencv-on-a-raspberry-pi/
http://robertcastle.com/2014/02/installing-opencv-on-a-raspberry-pi/
http://opencv.org/about.html
http://www.embedded-vision.com/platinum-members/texas-instruments/embedded-vision-training/documents/pages/opencv-ti%E2%80%99s-dsparm%C2%AE-plat
http://www.embedded-vision.com/platinum-members/texas-instruments/embedded-vision-training/documents/pages/opencv-ti%E2%80%99s-dsparm%C2%AE-plat
http://www.embedded-vision.com/platinum-members/texas-instruments/embedded-vision-training/documents/pages/opencv-ti%E2%80%99s-dsparm%C2%AE-plat
http://docs.opencv.org/modules/core/doc/basic_structures.html
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor
http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#inrange
http://docs.opencv.org/modules/imgproc/doc/filtering.html#erode
http://www.greatreality.com/color/ColorHVC.htm
http://opencv-srf.blogspot.com/2010/09/object-detection-using-color-seperation.html
http://opencv-srf.blogspot.com/2010/09/object-detection-using-color-seperation.html
http://en.wikipedia.org/wiki/HSL_and_HSV
http://docs.opencv.org/modules/highgui/doc/user_interface.html?highlight=waitkey#waitkey


34 

[16] OpenCV Tutorials : Making Your Own Linear Filters! [WWW] 

http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/filter_2d/filter_2d.html?highlight=kern

el (30.03.2015) 

[17] OpenCV API Reference : Structural Analysis and Shape Descriptors [WWW] 

http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html

#findcontours (29.03.2015) 

[18] Sockets Tutorial. The client server model. [WWW] 

http://www.linuxhowtos.org/C_C++/socket.htm (21.04.2015) 

[19] Linux Programmer’s Manual [WWW] http://man7.org/linux/man-

pages/man7/unix.7.html (21.04.2015) 

[20] Standard C++ Library reference [WWW] http://www.cplusplus.com/reference/cstring/ 

(20.03.2015) 

[21] Linux manual page : recvfrom [WWW] http://linux.die.net/man/2/recvfrom (22.04.2015) 

[22] OpenCV CUDA acceleration [WWW] http://opencv.org/platforms/cuda.html 

(29.04.2015) 

[23] Count and segment overlapping objects with Watershed and Distance Transform 

[WWW] https://opencv-code.com/tutorials/count-and-segment-overlapping-objects-with-

watershed-and-distance-transform/ (29.03.2015) 

[24] OpenCV API Reference : Miscellaneous Image Transformations 

http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html?highlight=

watershed#cv2.watershed (29.03.2015) 

[25] Bradski, G., Kaehler A. Learning OpenCV: Computer Vision in C++ with the OpenCV 

Library. Sebastopol, California : O’Reilly Media, Inc., 2008. 

[26] Laganière, R. OpenCV 2 : Computer Vision Application Programming Cookbook. 

Birmingham, UK : Packt Publishing, 2011. 

[27] OpenCV Tutorials. Image Processing. Histogram Calculation [WWW] 

http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_cal

culation.html (21.05.2015) 

 

  

http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/filter_2d/filter_2d.html?highlight=kernel
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/filter_2d/filter_2d.html?highlight=kernel
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#findcontours
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#findcontours
http://www.linuxhowtos.org/C_C++/socket.htm
http://man7.org/linux/man-pages/man7/unix.7.html
http://man7.org/linux/man-pages/man7/unix.7.html
http://www.cplusplus.com/reference/cstring/
http://linux.die.net/man/2/recvfrom
http://opencv.org/platforms/cuda.html
https://opencv-code.com/tutorials/count-and-segment-overlapping-objects-with-watershed-and-distance-transform/
https://opencv-code.com/tutorials/count-and-segment-overlapping-objects-with-watershed-and-distance-transform/
http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html?highlight=watershed#cv2.watershed
http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html?highlight=watershed#cv2.watershed
http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_calculation.html
http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_calculation/histogram_calculation.html


35 

Appendix 1 

It should be noted that while the class header is provided in the final listing, implementations 

have only been provided for the most important functions. 

Listing 1. Main program (main.cpp) 

#include "ColourTracking.hpp" 
#include "opencv2/highgui/highgui.hpp" 
#include <iostream> 
 
using namespace std; 
using namespace cv; 
 
int main(int argc, char **argv) 
{ 
    ColourTracking ct; 
         
    if (ct.CmdParameters(argc, argv) < 0) return -1; /* parse command line 
arguments */ 
     
     
    VideoCapture cap(0); /* initialize camera & video capturing */ 
     
    if (!cap.isOpened()) /* if camera failed to initialize, exit program */ 
    { 
         cout << ct.ts() << " Problem loading the camera. Exiting..\n"; 
         return -1; 
    } 
 
    cap.set(CV_CAP_PROP_FRAME_WIDTH, ct.width());   /* set width and */  
    cap.set(CV_CAP_PROP_FRAME_HEIGHT, ct.height()); /* height of captured 
frame */ 
 
    cout << ct.ts() << "Camera frame ";   /* print current frame size */ 
    cout << " HEIGHT:" << cap.get(CV_CAP_PROP_FRAME_HEIGHT); 
    cout << " WIDTH:" << cap.get(CV_CAP_PROP_FRAME_WIDTH) << endl;  
     
     
    ct.CreateControlWindow(); /* create control panel with trackbars */ 
     
    while (true) 
    { 
 
        ct.t_start(); /* starting point for time measurement */ 
         
        bool bSuccess = cap.read(ct.imgOriginal); 
        if (!bSuccess){ 
            cout << ct.ts() << " Problem reading from camera to Mat.\n"; 
            return -1; 
        } 
         



36 

        ct.Process(); // all major functions packed into one 
 
        ct.Display(); /* display original and/or thresholded frame */    
         
        ct.t_end(); 
 
        if (ct.getGUI()) { 
            if (waitKey(ct.delay()) == ESCAPE) 
            { 
                cout << ct.ts() << " ESC key pressed by user. Exiting..\n"; 
                return -1; 
            } 
        } 
    } 
         
    return 0; 
} 

 

Listing 2. Creating a control panel using OpenCV trackbars 

bool ColourTracking::CreateControlWindow() 
{ 
    if (bGUI){ 
 
        namedWindow("Control", CV_WINDOW_NORMAL); 
         
        cvCreateTrackbar("HUE min", "Control", &iHSV[0], 179); 
        cvCreateTrackbar("HUE max", "Control", &iHSV[1], 179); 
        cvCreateTrackbar("SAT min", "Control", &iHSV[2], 255); 
        cvCreateTrackbar("SAT max", "Control", &iHSV[3], 255); 
        cvCreateTrackbar("VAL min", "Control", &iHSV[4], 255); 
        cvCreateTrackbar("VAL max", "Control", &iHSV[5], 255); 
        cvCreateTrackbar("Original", "Control", &iShowOriginal, 1); 
        cvCreateTrackbar("Thresh", "Control", &iShowThresh, 1); 
        cvCreateTrackbar("Count", "Control", &iCount, 1); 
        cvCreateTrackbar("Morph", "Control", &iMorphLevel, 2); 
        cvCreateTrackbar("Debug", "Control", &iDebugLevel, 3); 
        cvCreateTrackbar("Move", "Control", &iObjMove, 1); 
    } 
 
    return true; 
} 

 

 

  



37 

Listing 3. Thresholding the image and applying erode and dilate (morphing) 

void ColourTracking::ThresholdImage(cv::Mat src, cv::Mat& dst, int hsv[], 
bool blur) 
{ 
    // container for HSV image 
    cv::Mat buf; 
 
    // RGB -> HSV        
    cv::cvtColor(src, buf, cv::COLOR_BGR2HSV); 
    if (blur) cv::GaussianBlur(buf, buf, cv::Size(5,5), 0,0); 
     
    // HSV -> binary (black&white) 
    if (hsv[0] <= hsv[1]) { 
        cv::inRange(buf, cv::Scalar(hsv[0], hsv[2], hsv[4]), 
cv::Scalar(hsv[1], hsv[3], hsv[5]), dst); 
    }  
    else { 
        cv::Mat higher, lower; 
        cv::inRange(buf, cv::Scalar(hsv[0], hsv[2], hsv[4]),   
cv::Scalar(HHUE, hsv[3], hsv[5]), higher); 
        cv::inRange(buf, cv::Scalar(LHUE, hsv[2], hsv[4]), 
cv::Scalar(hsv[1], hsv[3], hsv[5]), lower); 
        dst = higher + lower; 
    } 
}     
 
 
void ColourTracking::MorphImage(unsigned int morph, int size, cv::Mat src, 
cv::Mat& dst) 
{ 
    cv::Mat buf = src; /* buffer Mat on which to use erode and dilate */ 
     
    if (morph > 0) cv::erode(buf, buf, 
cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(size, size))); 
    if (morph > 1) cv::dilate(buf, buf, 
cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(size, size)));     
    if (morph > 1) cv::dilate(buf, buf, 
cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(size, size))); 
    if (morph > 0) cv::erode(buf, buf, 
cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(size, size))); 
     
    dst = buf; 
} 

 

 

 



38 

Listing 4. Finding contours on the thresholded image 

int ColourTracking::FindObjects(cv::Mat src, float minsize, float maxsize, 
std::vector<Object>& found) 
{ 
    cv::Mat imgBuffer8u; 
             
    src.convertTo(imgBuffer8u, CV_8U); 
             
    std::vector<std::vector<cv::Point> > contours; 
     
    cv::findContours(imgBuffer8u, contours, CV_RETR_EXTERNAL, 
CV_CHAIN_APPROX_SIMPLE); 
     
    found.clear(); // clear vector to make room for new objects 
     
    std::vector<cv::Moments> mv; // temporary moment vector  
    std::vector<float> sv; // temporary area vector  
    std::vector<cv::Point> mc; // temporary mass center vector (location)  
     
     
    for (unsigned int i = 0; i < contours.size(); i++) { // get moments of 
objects  
 
        sv.push_back (contourArea(contours[i])); 
 
 
        if (sv.back() >= minsize && sv.back() <= maxsize) { 
            mv.push_back (cv::moments(contours[i], false)); 
        } 
        else sv.pop_back(); 
         
    } 
     
    // get mass centers and create new objects in one loop 
    for (unsigned int i = 0; i < sv.size(); i++) { 
         
        mc.push_back (cv::Point((int) (mv[i].m10/mv[i].m00), (int) 
(mv[i].m01/mv[i].m00))); 
         
        // Object arguments: new index, x, y, area, coordinate margin, 
remove counter 
        found.push_back (Object(i, (int) mc[i].x, (int) mc[i].y, sv[i], 
rm_default, iHSV)); 
    } 
     
    // returns number of mass centers (aka objects) 
    return found.size(); 
} 

  



39 

Listing 5. Pushing found and confirmed objects to the vector of existing objects 

unsigned int ColourTracking::AddNewObjects(std::vector<Object> found, 
std::vector<Object>& exist) 
{ 
    bool isnew = true; 
     
    if (!exist.empty()) {          
        if (!found.empty()) { 
             
            // add currently found objects to vecExistingObjects 
            for (unsigned int i = 0; i < found.size(); i++) { 
                 
                isnew = true; 
                 
                for (unsigned int j = 0; j < exist.size(); j++) { 
 
                    if (found[i].x >= (exist[j].x - exist[j].cm) && 
found[i].x <= (exist[j].x + exist[j].cm)) { 
                        if (found[i].y >= (exist[j].y - exist[j].cm) && 
found[i].y <= (exist[j].y + exist[j].cm)) { 
                     
                            isnew = false; 
                            if (iObjMove == ENABLED) { 
                                exist[j].x = found[i].x;  
                                exist[j].y = found[i].y;  
                            } 
 
                            break; 
                        } 
                    } 
                } 
 
                // is a new object, add to existing objects 
                if (isnew){  
                     
                    IDcounter++; 
                    found[i].index = IDcounter; 
                     
                    exist.push_back (found[i]); 
                } 
            } 
        } 
    } 
    else { 
        if (!found.empty()) exist = found;  
    } 
 
    // return size of vecExistingObjects 
    return exist.size(); 
} 

 



40 

Listing 6. Increasing and decreasing removal and life counters 

void ColourTracking::ExistentialObjects(std::vector<Object> found, 
std::vector<Object>& exist) 
{ 
    bool addrm; 
    unsigned int i, j; 
     
    // if object has not been detected for too long, start decreasing 
rm_counter 
    // when it reaches zero or below, the object will be deleted during 
cleanup 
    if (!exist.empty()){ 
         
        if (!found.empty()){ 
            for (i = 0; i < exist.size(); i++){ 
                 
                addrm = false; 
                 
                for (j = 0; j < found.size(); j++){ 
                    if (FitMargin(exist[i].x, exist[i].y, found[j].x, 
found[j].y, found[j].cm)) { 
                        if (exist[i].lifecnt < MinLife) exist[i].lifecnt++; 
                        break; 
                    } 
                     
                } 
 
                if (j == found.size() && !FitMargin(exist[i].x, exist[i].y, 
found[j].x, found[j].y, found[j].cm)) 
                    addrm = true; 
                     
                if (addrm) exist[i].removcnt--; 
            } 
        } 
        else { 
            for (i = 0; i < exist.size(); i++){  // if no objects are found 
at all 
                exist[i].removcnt--; 
            } 
        } 
    } 
} 

 

 

 

  



41 

Listing 7. Cleanup of objects with the removal counter at zero 

unsigned int ColourTracking::CleanupObjects(std::vector<Object>& exist) 
{    
    if (!exist.empty()) { 
        // remove objects that no longer exist 
        exist.erase(std::remove_if(exist.begin(), exist.end(), 
                        [](const Object & o) { return o.removcnt == 0; } ),   
exist.end()); 
         
    } 
     
    // return size of vecExistingObjects 
    return exist.size(); 
} 

Listing 8. Drawing markers on displayed camera feed. 

void ColourTracking::DrawCircles(cv::Mat src, cv::Mat& dst, 
std::vector<Object> obj) 
{ 
    dst = cv::Mat::zeros(src.size(), src.type()); 
    float rad; 
     
    if (!obj.empty()) { 
        for (unsigned int i=0; i<obj.size(); i++) { 
              
            if (obj[i].lifecnt >= MinLife) { 
                  
                // circle area = pi * radius^2 
                rad = sqrt(obj[i].area/PI_VALUE); 
                cv::circle(dst,cv::Point(obj[i].x,obj[i].y), rad,  
cv::Scalar(0,0,255), 2, 8, 0); 
 
                if (iDebugLevel > 0) 
cv::circle(dst,cv::Point(obj[i].x,obj[i].y), 3, cv::Scalar(0,255,0), 2, 8, 
0); // draw mass center 
            } 
        } 
    } 
 
    if (imgOriginal.size() == imgCircles.size()) { 
            imgOriginal = imgOriginal + imgCircles; /* add drawn circles */ 
    } 
} 

  



42 

Listing 9. Writing object information into a buffer string 

void ColourTracking::WriteSendBuffer(std::vector<Object> obj, char* send) 
{ 
    unsigned int k = 0; 
 
    for (unsigned int i = 0; i < obj.size(); i++) { 
 
        if (obj[i].lifecnt >= MinLife) k++; // real object amount  
    } 
 
    bzero(send, 2048); /* flush send buffer */ 
     
    if (iCount != 0){ 
        std::string amt = std::to_string(k); 
        std::string time = ts(); 
 
        strcat(send, "<time>"); /* append timestamp to sent message */ 
        strncat(send, time.c_str(), time.size());   
         
        strcat(send, "<nr>");  
        strncat(send, amt.c_str(), amt.size()); /* append object amount */ 
         
        strcat(send, "\n"); 
         
        for (unsigned int i = 0; i < obj.size(); i++){ 
             
            if (obj[i].lifecnt >= MinLife) { 
 
                std::string ind = std::to_string(obj[i].index); 
                std::string x = std::to_string(obj[i].x); 
                std::string y = std::to_string(obj[i].y); 
                std::string s = std::to_string((int) obj[i].area); 
                 
                strcat(send, "<i>"); 
                strncat(send, ind.c_str(), ind.size()); 
                 
                strcat(send, "<x>"); 
                strncat(send, x.c_str(), x.size()); 
                 
                strcat(send, "<y>"); 
                strncat(send, y.c_str(), y.size()); 
                 
                strcat(send, "<S>"); 
                strncat(send, s.c_str(), s.size()); 
                 
                strcat(send, "\n"); /* append endline for each object */ 
            } 
         
        } 
        strcat(send, "\0"); 
    } 
    else strcpy(send, "<start>NOT_COUNTING<end>\n"); 



43 

     
    if (iDebugLevel == 3){ 
        std::cout << ts() << " Sending:\n" << send; 
        std::cout << "\n" << ts() << "send length: " << strlen(send) << 
std::endl; 
    } 
} 

 

Listing 10. Broadcasting information via network sockets 

void ColourTracking::SetupSocket() 
{ 
    sockfd = socket(AF_INET, SOCK_DGRAM, COMM_PROTOCOL); 
     
    bzero((char *) &server_addr, sizeof(server_addr)); 
    server_addr.sin_family = AF_INET; 
    server_addr.sin_addr.s_addr = INADDR_ANY; 
    server_addr.sin_port = htons(comm_port); 
    bind(sockfd, (struct sockaddr *) &server_addr, sizeof(server_addr)); 
} 
 
 
void ColourTracking::RecvSend(char* pass, char* send) 
{        
    bzero(pass,64); /* flush pass buffer */ 
    clientlen = sizeof(client_addr); 
     
    recvfrom(sockfd, pass, 64, MSG_DONTWAIT, 
    (struct sockaddr*)&client_addr, &clientlen); 
 
    if (!strcmp(pass,comm_pass)) { 
        sendto(sockfd, send, strlen(send), 0, 
        (struct sockaddr *) &client_addr, sizeof(client_addr)); 
    } 
} 
 

 

 

 

 

 

 

 

 



44 

Listing 11. Client-side C code example for requesting and receiving datagrams 

#include <sys/types.h>   /* These five libraries are always required */ 
#include <sys/socket.h>  
#include <netinet/in.h> /* for example, this is required to declare */ 
#include <arpa/inet.h>  /* the socklen_t type variables             */ 
#include <netdb.h>  
 
#include <stdio.h>  
#include <string.h> 
 
#define PASSPHRASE "[Insert passphrase here]"  
#define PORT_NR [Insert port number here]  
#define PASS_SIZE 64  
#define MSG_SIZE 2048  
#define IP_ADDRESS "[Insert Raspberry's IP address here]" 
 
int main(int argc, char** argv) 
{ 
 socklen_t sock, bytes_recv, sin_size; 
 struct sockaddr_in server_addr; 
 struct hostent *host; 
 char send_data[PASS_SIZE], recv_data[MSG_SIZE]; 
 host = (struct hostent *) gethostbyname((char*)IP_ADDRESS); 
 sock = socket(AF_INET, SOCK_DGRAM, 0); 
 server_addr.sin_family = AF_INET; 
 server_addr.sin_port = htons(PORT_NR); 
 server_addr.sin_addr = *((struct in_addr *)host->h_addr); 
 bzero(&(server_addr.sin_zero), 8); 
 sin_size = sizeof(struct sockaddr); 
 
 while (true) { 
  // Request datagram from Raspberry 
  sendto(sock, PASSPHRASE, PASS_SIZE, 0, 
   (struct sockaddr *)&server_addr, 
                   sizeof(struct sockaddr)); 
 
  // Flush message buffer before receiving new info 
  bzero(recv_data, MSG_SIZE); 
 
  // Receive datagram from Raspberry, store into string 
  bytes_recv = recvfrom(sock, recv_data, MSG_SIZE, 0, 
   (struct sockaddr *)&server_addr, &sin_size); 
 
  // Print whatever the Raspberry is transmitting 
  printf("%s\n", recv_data); 
 } 
} 
  



45 

Listing 12. ColourTracking class header, ColourTracking constructor, Object struct definition 

#ifndef _ColourTracking_HPP_ 
#define _ColourTracking_HPP_ 
 
#define COMM_PORT 60606 
#define COMM_PROTOCOL 0 // UDP 
#define COMM_PASS "getobjectinfo" 
 
#define CAP_HEIGHT 256 
#define CAP_WIDTH 256 
#define ENABLED 1 
#define DISABLED 0 
#define MAX_CYCLE_T 200 
#define MIN_CYCLE_T 50 
 
#define LHUE 0 
#define LSAT 0 
#define LVAL 0 
#define HHUE 179 
#define HSAT 255 
#define HVAL 255 
 
#define ESCAPE 27 
#define DEF_INTERVAL 100 
#define PI_VALUE 3.1415926535 
#define DEFAULT 3 
#define DEF_DEBUG 1 
#define MORPH_KERNEL_SIZE 3 
 
// approximate high hues of colours 
#define ORANGE 22 
#define YELLOW 38 
#define GREEN 75 
#define BLUE 130 
#define VIOLET 160 
#define RED 179 
 
#include "opencv2/core/core.hpp" 
#include <chrono> 
 
#include <netinet/in.h> 
 
class ColourTracking 
{ 
    /******************** Private access variables ********************/ 
    /***************** (e.g. configuration parameters) ****************/ 
    private: 
     
    // Image pixel arrays 
    cv::Mat imgThresh; 
    cv::Mat imgCircles; 
 



46 

    // do counting; show unaltered image; show thresholded image; GUI; blur 
when thresh 
    int iCount; 
    int iShowOriginal; 
    int iShowThresh; 
    bool bGUI; 
    bool bThreshBlur; 
 
    // hue/saturation/light intensity values; morph level; debug level 
    int iHSV[6]; 
    int iMorphLevel; 
    int iDebugLevel; 
     
    // main loop delay; captured frame height; captured frame width 
    unsigned int uiDelay; 
    unsigned int uiCaptureHeight; 
    unsigned int uiCaptureWidth; 
    unsigned int uiFrameHeight; 
    unsigned int uiFrameWidth; 
    bool ResizeImages; 
     
    // limits for counting objects 
    float ObjectMinsize; 
    float ObjectMaxsize; 
     
    // parameters for use in UDP communication 
    char comm_pass[256]; 
    unsigned int comm_port; 
    //int objectamount; 
     
    // chrono time measuring variables 
    std::chrono::high_resolution_clock::time_point start_time; 
    std::chrono::high_resolution_clock::time_point end_time; 
    unsigned int time_dif;   
     
    // udp communication variables 
    int sockfd; /* socket file descriptor */ 
    struct sockaddr_in server_addr, client_addr; // server & client address  
    socklen_t clientlen; /* length of client address */ 
    char CommPassBuffer[64]; /* message received from client */ 
    char CommSendBuffer[2048]; /* message sent to client */ 
 
     
    // struct for object member variables 
    struct Object 
    { 
        unsigned int index; // object index 
        int x; // x coord 
        int y; // y coord 
        int area; // area value 
        unsigned int removcnt; // if this reaches 0, the object is removed 
        unsigned int lifecnt; // amount of cycles the object has existed 
        float cm; // coordinate margin 
        int lhue; 



47 

        int hhue; 
        int lsat; 
        int hsat; 
        int lval; 
        int hval; 
         
        Object(unsigned int newindex, int newx, int newy, int newarea, int 
rmdef, int hsv[])  
        {  
            index = newindex; 
            x = newx; 
            y = newy; 
            area = newarea; 
            removcnt = rmdef; 
            lifecnt = 0; 
            cm = (sqrt(area))/2; 
            lhue = hsv[0]; 
            hhue = hsv[1]; 
            lsat = hsv[2]; 
            hsat = hsv[3]; 
            lval = hsv[4]; 
            hval = hsv[5]; 
        }  
 
    }; 
     
    unsigned int IDcounter; // will have a new ID for each object 
    unsigned int rm_default; 
    unsigned int MinLife; 
    int iObjMove; 
     
    std::vector<Object> vecExistingObjects; 
    std::vector<Object> vecFoundObjects; 
     
    /******************** OpenCV-related and other ********************/ 
    /******************** private access functions ********************/ 
     
    // threshold image with user defined parameters 
    void ThresholdImage(cv::Mat, cv::Mat&, int [], bool); 
     
    // erode & dilate binary image 
    void MorphImage(unsigned int, int, cv::Mat, cv::Mat&); 
     
    // create vectors for moments, areas and mass centers 
    int FindObjects(cv::Mat, float, float, std::vector<Object>&);  
     
    // work with object vectors 
    unsigned int AddNewObjects(std::vector<Object> found, 
std::vector<Object>& exist); 
    void ExistentialObjects(std::vector<Object> found, std::vector<Object>& 
exist); 
    unsigned int CleanupObjects(std::vector<Object>& exist); 
    bool FitMargin(int ax, int ay, int bx, int by, float cm); 
     



48 

    // draw circles around found objects 
    void DrawCircles(cv::Mat, cv::Mat&, std::vector<Object>); 
     
    // Information transmission via UDP 
    void SetupSocket();/* bind socket */ 
    void RecvSend(char*, char*); /* receive and send information back (if 
correct pass) */ 
    void WriteSendBuffer(std::vector<Object>, char*); /* write useful 
information to buffer */  
      
    /******************** Public access variables *********************/ 
    /************************ and functions ***************************/ 
    public: 
 
    cv::Mat imgOriginal; /* this Mat is public because it's used in main */ 
 
    void setHSV (int *); /* set hue, saturation and light intensity*/ 
  
    int* hsv() { return iHSV; } /* return HSV array */ 
 
    int val(unsigned int k) { return iHSV[k]; } /* return single value from 
hsv array */  
 
    unsigned int height() { return uiCaptureHeight; } 
 
    unsigned int width() { return uiCaptureWidth; } 
    bool getGUI() { return bGUI; } 
 
    bool showingImages() { return (iShowOriginal > 0 || iShowThresh > 0); } 
         
    ColourTracking() /* assign default values */ 
    { 
        iCount = ENABLED; 
        iMorphLevel = DISABLED; 
        iShowOriginal = DISABLED; 
        iShowThresh = DISABLED; 
        bGUI = ENABLED; 
        bThreshBlur = ENABLED; 
         
        int buffer[6] = {LHUE, HHUE, LSAT, HSAT, LVAL, HVAL}; 
        setHSV(buffer); 
         
        uiDelay = MAX_CYCLE_T - MIN_CYCLE_T; 
        iDebugLevel = DEF_DEBUG; 
        uiCaptureHeight = CAP_HEIGHT; 
        uiCaptureWidth = CAP_WIDTH; 
         
        ResizeImages = false; 
         
        ObjectMinsize = (uiCaptureHeight * uiCaptureWidth) / 100; 
        ObjectMaxsize = (uiCaptureHeight * uiCaptureWidth) / 4; 
         
        strncpy(comm_pass, COMM_PASS, sizeof(COMM_PASS)); 
        comm_port = COMM_PORT; 



49 

         
        rm_default = 5; 
        MinLife = rm_default * 2; // default is always higher than removal 
        iObjMove = ENABLED; 
         
        SetupSocket(); 
    } 
         
    void Process(); 
     
    // display original and thresholded images 
    void Display(); 
     
    // run-time control panel with highgui trackbars 
    bool CreateControlWindow(); 
     
    // calculate delay for the waitKey function in main.cpp 
    unsigned int delay(); 
    void t_start(); /* set starting timepoint */ 
    void t_end();   /* set end timepoint and calculate time_dif*/ 
     
    // parse command line arguments 
    int CmdParameters(int, char**);  
     
    // returns timestamp "[HH:MM:SS]" 
    std::string ts(); 
     
}; 
 
 
#endif 
 
 
Listing 13. Demonstrative hue bar 

 
cv::Mat ColourTracking::DemoHue() 
{ 
 cv::Mat hsvbar = cv::Mat::zeros(100, 180, CV_8UC3); 
 cvtColor(hsvbar, hsvbar, CV_BGR2HSV); 
 for (int i = 0; i < hsvbar.rows; i++) { 
  for (int j = 0; j < hsvbar.cols; j++) { 
 
   cv::Vec3b newpx; 
   newpx[0] = j; 
   newpx[1] = 255; 
   newpx[2] = 255; 
   hsvbar.at<cv::Vec3b>(i, j) = newpx; 
 
  } 
 } 
 cv::cvtColor(hsvbar, hsvbar, CV_HSV2BGR); 
 
 return hsvbar; 
} 


