Engine model operating under idle

Model description: 

The dynamic engine model, with parameters for a 1.6 liter, 4-cylinder fuel injected engine, is a two-input/two-output system, given by the following differential equations: $\dot{P}=k_P(\dot{m}_{ai}-\dot{m}_{ao}),$ where $k_p=42.40$

$\dot{N}=k_N(T_i-T_L),$ where $k_N=54.26$


$g{P}= \begin{cases} 1, & P<50.6625 \\ 0.0197(101.325P - P^2)^{\frac{1}{2}}, &P \geq 50.6625 \end{cases}$

$\dot{m}_{ao} = -0.0005968N-0.1336P+0.0005341NP+0.000001757NP^2$

$m_{ao} = \dot{m}_{ao}(t-\tau)/(120N), \ \tau=45/N$

$T_i = -39.22+325024m_{ao}-0.0112\delta^2+0.635\delta+(0.0216+0.000675\delta)N(2\pi/60)-0.000102N^2(2\pi/60)^2$

$T_L = (N/263.17)^2+T_d$.



Time domain: 


Publication details: 

TitleNeurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
Publication TypeJournal Article
AuthorsPuskorius, G.V., and Feldkamp L.A.