## Model description:

Simulation studies are carried out for the following MIMO discrete-time system with triangular form inputs

$$\begin{align*} x_{1,1}(k+1) &= f_{1,1}({\bar x}_{1,1}(k))+g_{1,1}({\bar x}_{1,1}(k))x_{1,2}(k) \\ x_{1,2}(k+1) &= f_{1,2}({\bar x}_{1,2}(k))+g_{1,2}({\bar x}_{1,2}(k))u_{1} (k)+d_{1}(k) \\ x_{2,1}(k+1) &= f_{2,1}({\bar x}_{2,1}(k)) +g_{2,1}({\bar x}_{2,1}(k))x_{2,2}(k) \\ x_{2,2}(k+1) &= f_{2,2}({\bar x}_{2,2}(k),u_{1}(k)) +g_{2,2}({\bar x}_{2,2}(k))u_{2}(k)+d_{2}(k) \\ y_{1}(k) &= x_{1,1}(k) \\ y_{2}(k) &= x_{2,1}(k), \end{align*}$$

where

$\begin{cases} f_{1,1}({\bar x}_{1,1}(k))={{x^{2}_{1,1}(k)}\over {1+x^{2}_{1,1}(k)}}\\ g_{1,1}({\bar x}_{1,1}(k))=0.3 \\ f_{1,2}({\bar x}_{1,2}(k))= {{x^{2}_{1,1}(k)}\over{1+x^{2}_{1,2}(k)+x^{2}_{2,1}(k)+x^{2}_{2,2}(k)}}\\ g_{1,2}({\bar x}_{1,2}(k))=1\\ d_{1}(k)=0.1 \cos{0.05k}\cos{x_{1,1}(k)}\\ \end{cases}$

$\begin{cases} f_{2,1}({\bar x}_{2,1}(k))= {{x^{2}_{2,1}(k)}\over {1+x^{2}_{2,1}(k)}}\\ g_{2,1}({\bar x}_{2,1}(k))=0.2\\ f_{2,2}({\bar x}_{2,2}(k),u_{1}(k))={{x^{2}_{2,1}(k)}\over{1+x^{2}_{1,1}+x^{2}_{1,2}(k)+x^{2}_{2,2}(k)}}u^{2}_{1}(k)\\ g_{2,2}({\bar x}_{2,2}(k))=1\\ d_{2}(k)=0.1\cos{0.05k}\cos{x_{2,1}(k)}\\ \end{cases}$

## Type:

## Form:

## Time domain:

## Linearity:

## Publication details:

Title | Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time |

Publication Type | Journal Article |

Year of Publication | 2004 |

Authors | Ge, S.S., Zhang Jin, and Lee Tong Heng |

Journal | IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics |

Volume | 34 |

Issue | 4 |

Start Page | 1630 |

Pagination | 1630-1645 |

Date Published | 08/2004 |

ISSN | 1083-4419 |

Accession Number | 8111571 |

Keywords | cascade systems, closed loop systems, discrete time systems, Lyapunov methods, MIMO systems, neural nets, nonlinear systems, stability |

Abstract | In this paper, adaptive neural network (NN) control is investigated for a class of multiinput and multioutput (MIMO) nonlinear systems with unknown bounded disturbances in discrete-time domain. The MIMO system under study consists of several subsystems with each subsystem in strict feedback form. The inputs of the MIMO system are in triangular form. First, through a coordinate transformation, the MIMO system is transformed into a sequential decrease cascade form (SDCF). Then, by using high-order neural networks (HONN) as emulators of the desired controls, an effective neural network control scheme with adaptation laws is developed. Through embedded backstepping, stability of the closed-loop system is proved based on Lyapunov synthesis. The output tracking errors are guaranteed to converge to a residue whose size is adjustable. Simulation results show the effectiveness of the proposed control scheme. |

DOI | 10.1109/TSMCB.2004.826827 |