MIMO discrete-time system with triangular form inputs

Model description:

Simulation studies are carried out for the following MIMO discrete-time system with triangular form inputs

\begin{align*} x_{1,1}(k+1) &= f_{1,1}({\bar x}_{1,1}(k))+g_{1,1}({\bar x}_{1,1}(k))x_{1,2}(k) \\ x_{1,2}(k+1) &= f_{1,2}({\bar x}_{1,2}(k))+g_{1,2}({\bar x}_{1,2}(k))u_{1} (k)+d_{1}(k) \\ x_{2,1}(k+1) &= f_{2,1}({\bar x}_{2,1}(k)) +g_{2,1}({\bar x}_{2,1}(k))x_{2,2}(k) \\ x_{2,2}(k+1) &= f_{2,2}({\bar x}_{2,2}(k),u_{1}(k)) +g_{2,2}({\bar x}_{2,2}(k))u_{2}(k)+d_{2}(k) \\ y_{1}(k) &= x_{1,1}(k) \\ y_{2}(k) &= x_{2,1}(k), \end{align*}

where

$\begin{cases} f_{1,1}({\bar x}_{1,1}(k))={{x^{2}_{1,1}(k)}\over {1+x^{2}_{1,1}(k)}}\\ g_{1,1}({\bar x}_{1,1}(k))=0.3 \\ f_{1,2}({\bar x}_{1,2}(k))= {{x^{2}_{1,1}(k)}\over{1+x^{2}_{1,2}(k)+x^{2}_{2,1}(k)+x^{2}_{2,2}(k)}}\\ g_{1,2}({\bar x}_{1,2}(k))=1\\ d_{1}(k)=0.1 \cos{0.05k}\cos{x_{1,1}(k)}\\ \end{cases}$

$\begin{cases} f_{2,1}({\bar x}_{2,1}(k))= {{x^{2}_{2,1}(k)}\over {1+x^{2}_{2,1}(k)}}\\ g_{2,1}({\bar x}_{2,1}(k))=0.2\\ f_{2,2}({\bar x}_{2,2}(k),u_{1}(k))={{x^{2}_{2,1}(k)}\over{1+x^{2}_{1,1}+x^{2}_{1,2}(k)+x^{2}_{2,2}(k)}}u^{2}_{1}(k)\\ g_{2,2}({\bar x}_{2,2}(k))=1\\ d_{2}(k)=0.1\cos{0.05k}\cos{x_{2,1}(k)}\\ \end{cases}$

Publication details:

 Title Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time Publication Type Journal Article Authors Ge, S.S., Zhang Jin, and Lee Tong Heng